Spaces:
Sleeping
Sleeping
| from byaldi import RAGMultiModalModel | |
| from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
| import torch | |
| from qwen_vl_utils import process_vision_info | |
| from PIL import Image | |
| import gradio as gr | |
| import re | |
| rag = RAGMultiModalModel.from_pretrained("vidore/colpali") | |
| vlm = Qwen2VLForConditionalGeneration.from_pretrained( | |
| "Qwen/Qwen2-VL-2B-Instruct", | |
| torch_dtype=torch.float32, | |
| trust_remote_code=True, | |
| device_map="auto", | |
| ) | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True) | |
| def extract_text(image, query): | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": query}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt") | |
| inputs = inputs.to("cpu") | |
| with torch.no_grad(): | |
| generated_ids = vlm.generate(**inputs, max_new_tokens=200, temperature=0.7, top_p=0.9) | |
| generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
| return processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
| def search_text(text, query): | |
| if query: | |
| searched_text = re.sub(f'({re.escape(query)})', r'<span style="background-color: yellow;">\1</span>', text, flags=re.IGNORECASE) | |
| else: | |
| searched_text = text | |
| return searched_text | |
| def extraction(image, query): | |
| extracted_text = extract_text(image, query) | |
| return extracted_text, extracted_text # return twice - one to display output and the other for state management | |
| """ | |
| Main App | |
| """ | |
| with gr.Blocks() as main_app: | |
| gr.Markdown("# Document Reader using OCR(English/Hindi)") | |
| gr.Markdown("### Use Doc_Reader to extract text out of documents - images(OCR) or ask questions based on the input image") | |
| with gr.Row(): | |
| with gr.Column(): | |
| img_input = gr.Image(type="pil", label="Upload an Image") | |
| gr.Markdown(""" | |
| ### Please use this prompt for text extraction | |
| **What text can you identify in this image? Include everything, even if it's partially obscured or in the background.** | |
| """) | |
| query_input = gr.Textbox(label="Enter query for retrieval", placeholder="Query/Prompt") | |
| extract_button = gr.Button("Read Doc!") | |
| search_input = gr.Textbox(label="Enter search term", placeholder="Search") | |
| search_button = gr.Button("Search!") | |
| with gr.Column(): | |
| extracted_text_op = gr.Textbox(label="Output") | |
| search_text_op = gr.HTML(label="Search Results") | |
| download_button = gr.Button("Download Plain Text") | |
| # Retrieval | |
| extracted_text_state = gr.State() | |
| extract_button.click( | |
| extraction, | |
| inputs=[img_input, query_input], | |
| outputs=[extracted_text_op, extracted_text_state] | |
| ) | |
| # Search | |
| search_button.click( | |
| search_text, | |
| inputs=[extracted_text_state, search_input], | |
| outputs=[search_text_op] | |
| ) | |
| # Download | |
| download_button.click( | |
| lambda text: gr.File.save_text_to_file(text, "extracted_text.txt"), | |
| inputs=[extracted_text_state], | |
| outputs=[gr.File(label="Download Extracted Text")] | |
| ) | |
| main_app.launch() |