Spaces:
Running
Running
File size: 12,653 Bytes
7931e06 b189dad 7931e06 b189dad a99b38e 7931e06 b189dad 7931e06 b189dad 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 b189dad 7931e06 b189dad 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 31ef40f 7931e06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import gradio as gr
import os
import cv2
import numpy as np
import asyncio
from utils import detect_faces_frame, apply_blur, load_caffe_models
from ultralight import UltraLightDetector
import tempfile
import json
# Create output directories
os.makedirs("output/image", exist_ok=True)
os.makedirs("output/video", exist_ok=True)
os.makedirs("temp", exist_ok=True)
# Initialize detector once
detector = UltraLightDetector()
# Age and gender options for filters
AGE_OPTIONS = ['0-2', '4-6', '8-12', '15-20', '25-32', '38-43', '48-53', '60+']
GENDER_OPTIONS = ['Male', 'Female']
# Operation options
OPERATION_OPTIONS = {
"Gaussian Blur": 0,
"Black Patch": 1,
"Pixelation": 2
}
def convert_for_json(obj):
"""Convert NumPy arrays to lists for JSON serialization"""
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, np.float32) or isinstance(obj, np.float64):
return float(obj)
elif isinstance(obj, np.int32) or isinstance(obj, np.int64):
return int(obj)
elif isinstance(obj, dict):
return {k: convert_for_json(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_for_json(item) for item in obj]
else:
return obj
def process_image(image, operation_name, age_filters=[], gender_filters=[], selected_face_indices=[]):
"""Process an image with face blurring"""
# Convert from PIL to cv2 format
if image is None:
return None, "Please upload an image"
# Convert from RGB (gradio) to BGR (OpenCV)
if isinstance(image, str): # If it's a path
image_cv = cv2.imread(image)
else: # If it's a numpy array
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Get operation code
operation = OPERATION_OPTIONS.get(operation_name, 0)
# Detect faces
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
predictions = loop.run_until_complete(detect_faces_frame(detector=detector, frame=image_cv))
loop.close()
# Create a temporary copy for drawing face boxes
image_with_boxes = image_cv.copy()
face_thumbnails = []
# Draw boxes around all detected faces with indices
for i, pred in enumerate(predictions):
box = np.array(pred['box'])
x1, y1, x2, y2 = box.astype(int)
# Draw box
cv2.rectangle(image_with_boxes, (x1, y1), (x2, y2), (0, 255, 0), 1)
face_img = image_cv[y1:y2, x1:x2]
face_rgb = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
caption = f"Face #{i} | {pred['gender']} | {pred['age']}"
face_thumbnails.append((face_rgb, caption))
# Draw index
# cv2.putText(image_with_boxes, f"#{i}: {pred['gender']}, {pred['age']}",
# (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
# Convert to RGB for display
image_with_boxes_rgb = cv2.cvtColor(image_with_boxes, cv2.COLOR_BGR2RGB)
# Create filters dictionary
filters = {
"gender": gender_filters,
"age": age_filters
}
# Create selected_faces list based on indices
selected_faces = []
if selected_face_indices:
indices = [int(idx.strip()) for idx in selected_face_indices.split(",") if idx.strip().isdigit()]
for i in indices:
if i < len(predictions):
selected_faces.append({"box": predictions[i]["box"]})
# Apply blur
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
processed_image = loop.run_until_complete(
apply_blur(
detected_faces=predictions,
frame=image_cv.copy(),
filters=filters,
selected_faces=selected_faces,
operation=operation
)
)
loop.close()
# Convert back to RGB for Gradio
processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
# Save results as JSON
results_data = {
"faces_detected": len(predictions),
"predictions": convert_for_json(predictions),
"operation": operation_name,
"filters": {
"gender": gender_filters,
"age": age_filters
},
"selected_faces": [int(idx.strip()) for idx in selected_face_indices.split(",") if idx.strip().isdigit()] if selected_face_indices else []
}
return [image_with_boxes_rgb, processed_image_rgb, json.dumps(results_data, indent=2), face_thumbnails]
# def process_video(video_path, operation_name, age_filters=[], gender_filters=[], progress=gr.Progress()):
# """Process a video with face blurring"""
# if video_path is None:
# return None, "Please upload a video"
# # Get operation code
# operation = OPERATION_OPTIONS.get(operation_name, 0)
# # Create a temporary file for the output
# output_path = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
# # Open the video
# cap = cv2.VideoCapture(video_path)
# if not cap.isOpened():
# return None, "Could not open video file"
# # Get video properties
# width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# fps = cap.get(cv2.CAP_PROP_FPS)
# total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# # Determine frame skipping (process every nth frame for speed)
# frame_skip = max(1, round(fps / 15)) # Process at most 15 fps
# # Create VideoWriter object
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# # Create filters dictionary
# filters = {
# "gender": gender_filters,
# "age": age_filters
# }
# # Process frames
# frame_count = 0
# face_count = 0
# # Process limited frames to prevent timeout (Gradio has a 60s limit by default)
# max_frames_to_process = min(300, total_frames) # Limit to 300 frames
# for _ in progress.tqdm(range(max_frames_to_process)):
# ret, frame = cap.read()
# if not ret:
# break
# # Process every nth frame (for efficiency)
# if frame_count % frame_skip == 0:
# # Detect faces
# loop = asyncio.new_event_loop()
# asyncio.set_event_loop(loop)
# predictions = loop.run_until_complete(detect_faces_frame(detector=detector, frame=frame))
# loop.close()
# face_count += len(predictions)
# # Apply blur
# loop = asyncio.new_event_loop()
# asyncio.set_event_loop(loop)
# processed_frame = loop.run_until_complete(
# apply_blur(
# detected_faces=predictions,
# frame=frame,
# filters=filters,
# operation=operation
# )
# )
# loop.close()
# # Write processed frame
# out.write(processed_frame)
# else:
# # Write original frame for skipped frames
# out.write(frame)
# frame_count += 1
# # Release resources
# cap.release()
# out.release()
# # Summary message
# summary = f"Processed {frame_count} frames, detected {face_count} faces"
# if frame_count < total_frames:
# summary += f" (limited to first {frame_count} frames out of {total_frames})"
# return output_path, summary
# Create Gradio interface
with gr.Blocks(title="Face Privacy Protection Tool") as demo:
gr.Markdown("# Face Privacy Protection Tool")
gr.Markdown("Upload an image or video to detect faces and apply privacy filters")
with gr.Tabs():
with gr.TabItem("Image Processing"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Image", type="pil")
operation_dropdown = gr.Dropdown(
choices=list(OPERATION_OPTIONS.keys()),
value="Gaussian Blur",
label="Blur Operation"
)
with gr.Accordion("Advanced Filtering", open=False):
age_filter = gr.CheckboxGroup(
choices=AGE_OPTIONS,
label="Filter by Age (select to blur)"
)
gender_filter = gr.CheckboxGroup(
choices=GENDER_OPTIONS,
label="Filter by Gender (select to blur)"
)
selected_faces = gr.Textbox(
label="Select Specific Faces to Blur (comma-separated indices, e.g., 0,1,3)",
placeholder="Enter face indices separated by commas"
)
image_button = gr.Button("Process Image")
with gr.Column():
output_tabs = gr.Tabs()
with output_tabs:
with gr.TabItem("Face Detection"):
image_with_boxes = gr.Image(label="Detected Faces")
with gr.TabItem("Processed Image"):
image_output = gr.Image(label="Processed Image")
with gr.TabItem("JSON Results"):
json_output = gr.JSON(label="Detection Results")
with gr.TabItem("Detected Faces (Metadata)"):
face_gallery = gr.Gallery(
label="Detected Faces",
show_label=True,
columns=4,
height="auto",
object_fit="contain"
)
image_button.click(
process_image,
inputs=[image_input, operation_dropdown, age_filter, gender_filter, selected_faces],
outputs=[image_with_boxes, image_output, json_output, face_gallery]
)
# with gr.TabItem("Video Processing"):
# with gr.Row():
# with gr.Column():
# video_input = gr.Video(label="Upload Video")
# video_operation = gr.Dropdown(
# choices=list(OPERATION_OPTIONS.keys()),
# value="Gaussian Blur",
# label="Blur Operation"
# )
# with gr.Accordion("Advanced Filtering", open=False):
# video_age_filter = gr.CheckboxGroup(
# choices=AGE_OPTIONS,
# label="Filter by Age (select to blur)"
# )
# video_gender_filter = gr.CheckboxGroup(
# choices=GENDER_OPTIONS,
# label="Filter by Gender (select to blur)"
# )
# video_button = gr.Button("Process Video")
# with gr.Column():
# video_output = gr.Video(label="Processed Video")
# video_summary = gr.Textbox(label="Processing Summary")
# video_button.click(
# process_video,
# inputs=[video_input, video_operation, video_age_filter, video_gender_filter],
# outputs=[video_output, video_summary]
# )
gr.Markdown("""
## How to Use
1. **Upload** an image or video using the respective tab
2. **Choose** your preferred blur operation:
- **Gaussian Blur**: Blurs facial features while maintaining face shape
- **Black Patch**: Completely covers faces with black rectangles
- **Pixelation**: Creates a mosaic effect over faces
3. **Advanced Filtering**:
- Filter by age group (select which age groups to blur)
- Filter by gender (select which genders to blur)
- For images, you can select specific face indices to blur
4. **Process** the media and view the results
Note: Video processing may take some time depending on the file size.
""")
if __name__ == "__main__":
demo.launch() |