File size: 8,491 Bytes
7931e06
 
 
 
7071546
7931e06
bdf6b1f
7931e06
 
6524b5b
7071546
7931e06
7071546
 
7931e06
 
7071546
 
7931e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cff3351
 
7931e06
 
3e688e6
 
 
 
7931e06
bdf6b1f
7931e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e55e336
7931e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
633711e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import cv2
from ultralight import UltraLightDetector
from ultralight.utils import draw_faces
import time
import os
import asyncio
import numpy as np

def load_caffe_models():
    models_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "age_gender_models")
    
    age_net = cv2.dnn.readNet(
        os.path.join(models_dir, "age_net.caffemodel"),
        os.path.join(models_dir, "age_deploy.prototxt")
    )
    gender_net = cv2.dnn.readNet(
        os.path.join(models_dir, "gender_net.caffemodel"),
        os.path.join(models_dir, "gender_deploy.prototxt")
    )
    
    return age_net, gender_net

async def detect_faces_frame(detector, frame=None):
    if frame is None:
        print("No frames obtained!")
        return list()
    else:
        # define age and gender list
        age_list = ['0-2', '4-6', '8-12', '15-20', '25-32', '38-43', '48-53', '60+']
        gender_list = ['Male', 'Female']
        
        # detect the faces and load age & gender detection models
        boxes, scores = detector.detect_one(frame)
        age_model, gender_model = load_caffe_models()
        
        results = []
        
        for i, box in enumerate(boxes):
            x1, y1, x2, y2 = box.astype(int)
            padding_x = int((x2 - x1) * 0.15)
            padding_y = int((y2 - y1) * 0.15)
            height, width = frame.shape[:2]
            
            x1_pad = max(0, x1 - padding_x)
            y1_pad = max(0, y1 - padding_y)
            x2_pad = min(width, x2 + padding_x)
            y2_pad = min(height, y2 + padding_y)
            
            box = np.array([x1_pad, y1_pad, x2_pad, y2_pad]) 
            face_img = frame[y1_pad:y2_pad, x1_pad:x2_pad] 
                
            if face_img.shape[0] < 10 or face_img.shape[1] < 10:
                continue
            blob = cv2.dnn.blobFromImage(
                face_img, 1.0, (227, 227),
                (78.4263377603, 87.7689143744, 114.895847746),
                swapRB=False
            )
            gender_model.setInput(blob)
            gender_preds = gender_model.forward()
            gender = gender_list[gender_preds[0].argmax()]
            gender_confidence = float(gender_preds[0].max())
            
            age_model.setInput(blob)
            age_preds = age_model.forward()
            age = age_list[age_preds[0].argmax()]
            age_confidence = float(age_preds[0].max())
            
            results.append({
                'index': i,
                'box': box.tolist(),
                'score': float(scores[i]),
                'gender': gender,
                'gender_confidence': gender_confidence,
                'age': age,
                'age_confidence': age_confidence
            })
            
        return results

    
def apply_black_patch(frame, face_img, color=(0,0,0)):
    """Apply black patch to face region"""
    if frame is None or not face_img:
        return frame
    x1, y1, x2, y2 = map(int, face_img["box"])
    frame[y1:y2, x1:x2] = color
    return frame

def apply_gaussian_blur(frame, face_img, blur_factor=40):
    """Apply strong Gaussian blur to face region"""
    if frame is None or not face_img:
        return frame
    x1, y1, x2, y2 = map(int, face_img['box'])
    face_region = frame[y1:y2, x1:x2]
    
    # Ensure blur_factor is odd (requirement for GaussianBlur)
    if blur_factor % 2 == 0:
        blur_factor += 1
        
    # Apply blur
    blurred = cv2.GaussianBlur(face_region, (blur_factor, blur_factor), 0)
    frame[y1:y2, x1:x2] = blurred

    return frame

def apply_pixelation(frame, face_img, blocks=8):
    """Apply pixelation effect to face region"""
    if frame is None or not face_img:
        return frame
    
    x1, y1, x2, y2 = map(int, face_img['box'])
    face_region = frame[y1:y2, x1:x2]
    
    height, width = face_region.shape[:2]
    
    # Create heavy pixelation (small number of blocks = larger pixels)
    temp = cv2.resize(face_region, (blocks, blocks), interpolation=cv2.INTER_LINEAR)
    pixelated = cv2.resize(temp, (width, height), interpolation=cv2.INTER_NEAREST)
    frame[y1:y2, x1:x2] = pixelated
    return frame

async def apply_blur(
    detected_faces, # Can not be None, mandatory argument
    frame=None, 
    filters=None,
    selected_faces=[],
    operation=0, # default Gaussian Blur(High Kernel, blur factor 30); Other values are: 1 -> Black Patch(Simple Occlusion), 2 -> Pixelation(Heavy Mosaicing)
    output_path_root=None
):
    # suppose i'm processing the video, how can i play it while processing it? also, post processing how do i play it? i'd be uing flask as the backend
    """
    if filters is None:
        # blur all faces
    else:
        if filters["age"] is None or len(filters["age"]) == 0:
            # blur faces based on gender
        elif filters["gender"] is None or len(filters["gender"]) == 0:
            # blur faces based on age
        else:
            # blur faces based on both age and gender
    
    # Implement only if you have time
    if selected_faces is not None:
        # blur selected_faces
    """

    if filters is None:
        # blur all faces
        for face_img in detected_faces:
            selected_faces.append({"box": face_img["box"]})
            
    else:
        if len(filters["gender"]) != 0:
            for face_img in detected_faces:
                if face_img["gender"] in filters["gender"]:
                    selected_faces.append({"box": face_img["box"]})
                
        if len(filters["age"]) != 0:
            for face_img in detected_faces:
                if face_img["age"] in filters["age"]:
                    selected_faces.append({"box": face_img["box"]})
    
    if len(selected_faces) != 0:
        for face_img in selected_faces:
            if operation == 0:
                frame = apply_gaussian_blur(frame, face_img=face_img)
            elif operation == 1:
                frame = apply_black_patch(frame, face_img=face_img)
            elif operation == 2:
                frame = apply_pixelation(frame, face_img=face_img)
    
    return frame


async def process_input(
    image_path=None,
    video_path=None,
    output_path_root=None,
    filters=None,
    operation=0,
    selected_faces=[]
):
    detector = UltraLightDetector()
    if image_path is not None:
        output_path = f"{output_path_root}/image/output_image.jpeg"
        frame = cv2.imread(image_path)
        predictions = await detect_faces_frame(frame=frame, detector=detector)
        frame = await apply_blur(
            predictions,
            frame=frame,
            filters=filters,
            selected_faces=selected_faces,
            operation=operation,
            output_path_root=output_path_root
        )
        cv2.imwrite(output_path, frame)
        print("Output saved successfully!")
        cv2.imshow("Result Image", frame)
        cv2.waitKey(0)
    
    elif video_path is not None:
        output_path = f"{output_path_root}/video/output_video.mp4"
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            print(f"Error: Could not open video {video_path}")
            return [], []
        
        org_fps = cap.get(cv2.CAP_PROP_FPS)
        frame_skip = max(1, round(org_fps / 30))
        
        frame_count = 0
        
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, org_fps, (width, height))
        all_predictions = []
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            
            if frame_count % frame_skip == 0:
                predictions = await detect_faces_frame(frame=frame, detector=detector)
                all_predictions.append(predictions)
                
                out.write(frame)
                     
            frame_count += 1
        cap.release()
        out.release()
        print(f"Video processing complete. Output saved to {output_path}")
    
    else:
        print("Error: No input provided")
    
    cv2.destroyAllWindows()
    
    
if __name__ == "__main__":
    image_path = r"D:\hackathons\we_hack_2025\project_anon\trials\teenage_girls.png"
    output_path_root = r"D:\hackathons\we_hack_2025\project_anon\output"
    asyncio.run(process_input(image_path=image_path, output_path_root=output_path_root, operation=2))