File size: 11,312 Bytes
cc86f1b
 
3726350
13e3d2b
 
 
 
a7eec35
 
cc86f1b
 
a7eec35
 
3726350
 
 
 
 
 
 
 
 
 
 
b366822
 
 
 
 
 
 
 
 
 
73c7e87
b366822
 
 
 
 
 
 
1ea76a1
 
 
3f9eaee
 
 
3d96b43
8dc5d16
 
 
 
 
b366822
 
3d96b43
 
b366822
 
 
 
3d96b43
 
 
 
 
 
 
 
 
 
 
 
 
 
3726350
1a9d56e
 
3d96b43
 
 
3726350
3d96b43
 
3726350
3d96b43
 
 
 
b366822
 
 
a7eec35
cc86f1b
 
 
a7eec35
b366822
eca0fa7
 
 
 
 
 
7be8da7
a7eec35
 
cc86f1b
 
 
 
 
 
b366822
 
cc86f1b
 
 
 
 
 
eca0fa7
b366822
eca0fa7
 
 
b366822
cc86f1b
b366822
cc86f1b
 
 
 
 
eca0fa7
 
 
cc86f1b
 
 
 
 
 
 
 
 
b366822
 
 
 
 
 
 
 
 
 
 
7d3e0ef
 
 
 
 
 
 
 
 
 
b366822
8dc5d16
3726350
b366822
eca0fa7
b366822
 
 
 
eca0fa7
 
b366822
f336786
a7eec35
f336786
a7eec35
 
7d3e0ef
4ac731c
 
 
a7eec35
4ac731c
b366822
 
f336786
 
9530053
f336786
cc86f1b
f336786
eca0fa7
 
b366822
 
 
 
 
cc86f1b
65ff348
b366822
cc86f1b
 
 
b366822
eca0fa7
b366822
 
 
eca0fa7
 
 
 
 
cc86f1b
 
 
 
 
 
b366822
eca0fa7
 
 
cc86f1b
 
 
 
 
 
65ff348
b366822
 
 
 
 
cc86f1b
 
b366822
 
 
 
cc86f1b
 
 
65ff348
 
cc86f1b
329e33e
 
 
 
 
 
b366822
329e33e
 
 
 
9530053
b366822
 
 
 
 
 
 
 
 
73c7e87
b366822
 
 
 
 
 
 
f336786
a7eec35
 
cc86f1b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from typing import List, Dict, Any
import json
import torch
import os

# Disable xformers for CPU compatibility with Stella models
os.environ["XFORMERS_DISABLED"] = "1"

import gradio as gr
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from sentence_transformers import SentenceTransformer

# Device detection - use GPU if available, otherwise CPU
def get_device():
    if torch.cuda.is_available():
        print("🚀 GPU detected - using CUDA for acceleration")
        return 'cuda'
    else:
        print("💻 Using CPU for inference")
        return 'cpu'

DEVICE = get_device()

# Available models
MODELS = {
    "nomic-ai/nomic-embed-text-v1.5": {"trust_remote_code": True},
    "nomic-ai/nomic-embed-text-v1": {"trust_remote_code": True},
    "mixedbread-ai/mxbai-embed-large-v1": {"trust_remote_code": False},
    "BAAI/bge-m3": {"trust_remote_code": False},
    "sentence-transformers/all-MiniLM-L6-v2": {"trust_remote_code": False},
    "sentence-transformers/all-mpnet-base-v2": {"trust_remote_code": False},
    "Snowflake/snowflake-arctic-embed-m": {"trust_remote_code": False},
    "Snowflake/snowflake-arctic-embed-l": {"trust_remote_code": False},
    "Snowflake/snowflake-arctic-embed-m-long": {"trust_remote_code": True},
    "Snowflake/snowflake-arctic-embed-m-v2.0": {"trust_remote_code": False},
    "BAAI/bge-large-en-v1.5": {"trust_remote_code": False},
    "BAAI/bge-base-en-v1.5": {"trust_remote_code": False},
    "BAAI/bge-small-en-v1.5": {"trust_remote_code": False},
    "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2": {"trust_remote_code": False},
    "ibm-granite/granite-embedding-30m-english": {"trust_remote_code": False},
    "ibm-granite/granite-embedding-278m-multilingual": {"trust_remote_code": False},
    "Qwen/Qwen3-Embedding-0.6B": {"trust_remote_code": False},
    "Qwen/Qwen3-Embedding-4B": {"trust_remote_code": False},
    "Qwen/Qwen3-Embedding-8B": {"trust_remote_code": False},
    "dunzhang/stella_en_400M_v5": {"trust_remote_code": True},
    "dunzhang/stella_en_1.5B_v5": {"trust_remote_code": True},
    "infgrad/stella-base-en-v2": {"trust_remote_code": True},
    "nvidia/NV-Embed-v2": {"trust_remote_code": True},
    "Alibaba-NLP/gte-Qwen2-7B-instruct": {"trust_remote_code": False},
    "Alibaba-NLP/gte-Qwen2-1.5B-instruct": {"trust_remote_code": False},
    "intfloat/multilingual-e5-large-instruct": {"trust_remote_code": False},
    "intfloat/multilingual-e5-large": {"trust_remote_code": False},
    "BAAI/bge-en-icl": {"trust_remote_code": False},
}

# Model cache - keep only one model loaded at a time
current_model = None
current_model_name = "nomic-ai/nomic-embed-text-v1.5"

# Initialize default model
def load_model(model_name: str):
    global current_model, current_model_name
    
    # If requesting the same model that's already loaded, return it
    if current_model is not None and current_model_name == model_name:
        return current_model
    
    # Unload the previous model if it exists
    if current_model is not None:
        del current_model
        current_model = None
    
    # Load the new model
    trust_remote_code = MODELS.get(model_name, {}).get("trust_remote_code", False)
    try:
        print(f"Loading model '{model_name}' on {DEVICE}")
        
        
        current_model = SentenceTransformer(
            model_name, 
            trust_remote_code=trust_remote_code,
            device=DEVICE
        )
        current_model_name = model_name
        print(f"✅ Model '{model_name}' loaded successfully on {DEVICE}")
    except Exception as e:
        raise ValueError(f"Failed to load model '{model_name}': {str(e)}")
    
    return current_model

# Load default model
model = load_model(current_model_name)

# Create FastAPI app
fastapi_app = FastAPI()


def embed(document: str, model_name: str = None):
    if model_name:
        try:
            selected_model = load_model(model_name)
            return selected_model.encode(document)
        except Exception as e:
            raise ValueError(f"Error with model '{model_name}': {str(e)}")
    return model.encode(document)


# FastAPI endpoints
@fastapi_app.post("/embed")
async def embed_text(data: Dict[str, Any]):
    """Direct API endpoint for text embedding without queue"""
    try:
        text = data.get("text", "")
        model_name = data.get("model", current_model_name)
        
        if not text:
            return JSONResponse(
                status_code=400,
                content={"error": "No text provided"}
            )
        
        # Allow any model but warn about trust_remote_code
        if model_name not in MODELS:
            trust_remote_code = False
        else:
            trust_remote_code = MODELS[model_name].get("trust_remote_code", False)
        
        # Generate embedding
        embedding = embed(text, model_name)
        
        return JSONResponse(
            content={
                "embedding": embedding.tolist(),
                "dim": len(embedding),
                "model": model_name,
                "trust_remote_code": trust_remote_code,
                "predefined": model_name in MODELS
            }
        )
    except Exception as e:
        return JSONResponse(
            status_code=500,
            content={"error": str(e)}
        )


@fastapi_app.get("/models")
async def list_models():
    """List available embedding models"""
    return JSONResponse(
        content={
            "models": list(MODELS.keys()),
            "default": current_model_name
        }
    )


with gr.Blocks(title="Multi-Model Text Embeddings", css="""
    .json-holder {
        max-height: 400px !important;
        overflow-y: auto !important;
    }
    .json-holder .wrap {
        max-height: 400px !important;
        overflow-y: auto !important;
    }
""") as app:
    gr.Markdown("# Multi-Model Text Embeddings")
    gr.Markdown("Generate embeddings for your text using 28+ state-of-the-art embedding models including top MTEB performers like NV-Embed-v2, gte-Qwen2-7B-instruct, Nomic, BGE, Snowflake, IBM Granite, Qwen3, Stella, and more.")
    gr.Markdown(f"**Device**: {DEVICE.upper()} {'🚀' if DEVICE == 'cuda' else '💻'}")
    
    # Model selector dropdown (allows custom input)
    model_dropdown = gr.Dropdown(
        choices=list(MODELS.keys()),
        value=current_model_name,
        label="Select Embedding Model",
        info="Choose from predefined models or enter any Hugging Face model name",
        allow_custom_value=True
    )
    
    # Create an input text box
    text_input = gr.Textbox(label="Enter text to embed", placeholder="Type or paste your text here...")

    # Create an output component to display the embedding
    output = gr.JSON(label="Text Embedding", elem_classes=["json-holder"])
    
    # Add a submit button with API name
    submit_btn = gr.Button("Generate Embedding", variant="primary")

    # Handle both button click and text submission
    submit_btn.click(embed, inputs=[text_input, model_dropdown], outputs=output, api_name="predict")
    text_input.submit(embed, inputs=[text_input, model_dropdown], outputs=output)
    
    # Add API usage guide
    gr.Markdown("## API Usage")
    gr.Markdown("""
    You can use this API in two ways: via the direct FastAPI endpoint or through Gradio clients.
    
    **Security Note**: Only predefined models allow `trust_remote_code=True`. Any other Hugging Face model will use `trust_remote_code=False` for security.
    
    ### List Available Models
    ```bash
    curl https://ipepe-nomic-embeddings.hf.space/models
    ```
    
    ### Direct API Endpoint (No Queue!)
    ```bash
    # Default model (nomic-ai/nomic-embed-text-v1.5)
    curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
      -H "Content-Type: application/json" \
      -d '{"text": "Your text to embed goes here"}'
    
    # With predefined model (trust_remote_code allowed)
    curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
      -H "Content-Type: application/json" \
      -d '{"text": "Your text to embed goes here", "model": "sentence-transformers/all-MiniLM-L6-v2"}'
    
    # With any Hugging Face model (trust_remote_code=False for security)
    curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
      -H "Content-Type: application/json" \
      -d '{"text": "Your text to embed goes here", "model": "intfloat/e5-base-v2"}'
    ```
    
    Response format:
    ```json
    {
      "embedding": [0.123, -0.456, ...],
      "dim": 384,
      "model": "sentence-transformers/all-MiniLM-L6-v2",
      "trust_remote_code": false,
      "predefined": true
    }
    ```
    
    ### Python Example (Direct API)
    ```python
    import requests
    
    # List available models
    models = requests.get("https://ipepe-nomic-embeddings.hf.space/models").json()
    print(models["models"])
    
    # Generate embedding with specific model
    response = requests.post(
        "https://ipepe-nomic-embeddings.hf.space/embed",
        json={
            "text": "Your text to embed goes here",
            "model": "BAAI/bge-small-en-v1.5"
        }
    )
    result = response.json()
    embedding = result["embedding"]
    ```
    
    ### Python Example (Gradio Client)
    ```python
    from gradio_client import Client
    
    client = Client("ipepe/nomic-embeddings")
    result = client.predict(
        "Your text to embed goes here",
        "nomic-ai/nomic-embed-text-v1.5",  # model selection
        api_name="/predict"
    )
    print(result)  # Returns the embedding array
    ```
    
    ### Available Models
    - `nomic-ai/nomic-embed-text-v1.5` (default) - High-performing open embedding model with large token context
    - `nomic-ai/nomic-embed-text-v1` - Previous version of Nomic embedding model
    - `mixedbread-ai/mxbai-embed-large-v1` - State-of-the-art large embedding model from mixedbread.ai
    - `BAAI/bge-m3` - Multi-functional, multi-lingual, multi-granularity embedding model
    - `sentence-transformers/all-MiniLM-L6-v2` - Fast, small embedding model for general use
    - `sentence-transformers/all-mpnet-base-v2` - Balanced performance embedding model
    - `Snowflake/snowflake-arctic-embed-m` - Medium-sized Arctic embedding model
    - `Snowflake/snowflake-arctic-embed-l` - Large Arctic embedding model
    - `Snowflake/snowflake-arctic-embed-m-long` - Medium Arctic model optimized for long context
    - `Snowflake/snowflake-arctic-embed-m-v2.0` - Latest Arctic embedding with multilingual support
    - `BAAI/bge-large-en-v1.5` - Large BGE embedding model for English
    - `BAAI/bge-base-en-v1.5` - Base BGE embedding model for English
    - `BAAI/bge-small-en-v1.5` - Small BGE embedding model for English
    - `sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2` - Multilingual paraphrase model
    - `ibm-granite/granite-embedding-30m-english` - IBM Granite 30M English embedding model
    - `ibm-granite/granite-embedding-278m-multilingual` - IBM Granite 278M multilingual embedding model
    """)

if __name__ == '__main__':
    # Mount FastAPI app to Gradio
    app = gr.mount_gradio_app(fastapi_app, app, path="/")
    
    # Run with Uvicorn (Gradio uses this internally)
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)