Spaces:
Runtime error
Runtime error
File size: 20,702 Bytes
fdc5d7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
import logging
import json
from typing import Any, List, Optional, Dict, Tuple
import requests
from huggingface_hub import HfApi
from app.core.config import settings
from app.schemas.dataset_common import ImpactLevel
from app.services.redis_client import sync_cache_set, sync_cache_get, generate_cache_key, get_redis_sync
import time
import asyncio
import redis
import gzip
from datetime import datetime, timezone
import os
from app.schemas.dataset import ImpactAssessment
from app.schemas.dataset_common import DatasetMetrics
import httpx
import redis.asyncio as aioredis
log = logging.getLogger(__name__)
api = HfApi()
redis_client = redis.Redis(host="redis", port=6379, decode_responses=True)
# Thresholds for impact categorization
SIZE_THRESHOLD_LOW = 100 * 1024 * 1024 # 100 MB
SIZE_THRESHOLD_MEDIUM = 1024 * 1024 * 1024 # 1 GB
DOWNLOADS_THRESHOLD_LOW = 1000
DOWNLOADS_THRESHOLD_MEDIUM = 10000
LIKES_THRESHOLD_LOW = 10
LIKES_THRESHOLD_MEDIUM = 100
HF_API_URL = "https://huggingface.co/api/datasets"
DATASET_CACHE_TTL = 60 * 60 # 1 hour
# Redis and HuggingFace API setup
REDIS_KEY = "hf:datasets:all:compressed"
REDIS_META_KEY = "hf:datasets:meta"
REDIS_TTL = 60 * 60 # 1 hour
# Impact thresholds (in bytes)
SIZE_LOW = 100 * 1024 * 1024
SIZE_MEDIUM = 1024 * 1024 * 1024
def get_hf_token():
token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if not token:
raise RuntimeError("HUGGINGFACEHUB_API_TOKEN environment variable is not set. Please set it securely.")
return token
def get_dataset_commits(dataset_id: str, limit: int = 20):
from huggingface_hub import HfApi
import logging
log = logging.getLogger(__name__)
api = HfApi()
log.info(f"[get_dataset_commits] Fetching commits for dataset_id={dataset_id}")
try:
commits = api.list_repo_commits(repo_id=dataset_id, repo_type="dataset")
log.info(f"[get_dataset_commits] Received {len(commits)} commits for {dataset_id}")
except Exception as e:
log.error(f"[get_dataset_commits] Error fetching commits for {dataset_id}: {e}", exc_info=True)
raise # Let the API layer catch and handle this
result = []
for c in commits[:limit]:
try:
commit_id = getattr(c, "commit_id", "")
title = getattr(c, "title", "")
message = getattr(c, "message", title)
authors = getattr(c, "authors", [])
author_name = authors[0] if authors and isinstance(authors, list) else ""
created_at = getattr(c, "created_at", None)
if created_at:
if hasattr(created_at, "isoformat"):
date = created_at.isoformat()
else:
date = str(created_at)
else:
date = ""
result.append({
"id": commit_id or "",
"title": title or message or "",
"message": message or title or "",
"author": {"name": author_name, "email": ""},
"date": date,
})
except Exception as e:
log.error(f"[get_dataset_commits] Error parsing commit: {e} | Commit: {getattr(c, '__dict__', str(c))}", exc_info=True)
log.info(f"[get_dataset_commits] Returning {len(result)} parsed commits for {dataset_id}")
return result
def get_dataset_files(dataset_id: str) -> List[str]:
return api.list_repo_files(repo_id=dataset_id, repo_type="dataset")
def get_file_url(dataset_id: str, filename: str, revision: Optional[str] = None) -> str:
from huggingface_hub import hf_hub_url
return hf_hub_url(repo_id=dataset_id, filename=filename, repo_type="dataset", revision=revision)
def get_datasets_page_from_zset(offset: int = 0, limit: int = 10, search: str = None) -> dict:
import redis
import json
redis_client = redis.Redis(host="redis", port=6379, db=0, decode_responses=True)
zset_key = "hf:datasets:all:zset"
hash_key = "hf:datasets:all:hash"
# Get total count
total = redis_client.zcard(zset_key)
# Get dataset IDs for the page
ids = redis_client.zrange(zset_key, offset, offset + limit - 1)
# Fetch metadata for those IDs
if not ids:
return {"items": [], "count": total}
items = redis_client.hmget(hash_key, ids)
# Parse JSON and filter/search if needed
parsed = []
for raw in items:
if not raw:
continue
try:
item = json.loads(raw)
parsed.append(item)
except Exception:
continue
if search:
parsed = [d for d in parsed if search.lower() in (d.get("id") or "").lower()]
return {"items": parsed, "count": total}
async def _fetch_size(session: httpx.AsyncClient, dataset_id: str) -> Optional[int]:
"""Fetch dataset size from the datasets server asynchronously."""
url = f"https://datasets-server.huggingface.co/size?dataset={dataset_id}"
try:
resp = await session.get(url, timeout=30)
if resp.status_code == 200:
data = resp.json()
return data.get("size", {}).get("dataset", {}).get("num_bytes_original_files")
except Exception as e:
log.warning(f"Could not fetch size for {dataset_id}: {e}")
return None
async def _fetch_sizes(dataset_ids: List[str]) -> Dict[str, Optional[int]]:
"""Fetch dataset sizes in parallel."""
results: Dict[str, Optional[int]] = {}
async with httpx.AsyncClient() as session:
tasks = {dataset_id: asyncio.create_task(_fetch_size(session, dataset_id)) for dataset_id in dataset_ids}
for dataset_id, task in tasks.items():
results[dataset_id] = await task
return results
def process_datasets_page(offset, limit):
"""
Fetch and process a single page of datasets from Hugging Face and cache them in Redis.
"""
import redis
import os
import json
import asyncio
log = logging.getLogger(__name__)
log.info(f"[process_datasets_page] ENTRY: offset={offset}, limit={limit}")
token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if not token:
log.error("[process_datasets_page] HUGGINGFACEHUB_API_TOKEN environment variable is not set.")
raise RuntimeError("HUGGINGFACEHUB_API_TOKEN environment variable is not set. Please set it securely.")
headers = {
"Authorization": f"Bearer {token}",
"User-Agent": "Mozilla/5.0 (compatible; CollinearTool/1.0; +https://yourdomain.com)"
}
params = {"limit": limit, "offset": offset, "full": "True"}
redis_client = redis.Redis(host="redis", port=6379, db=0, decode_responses=True)
stream_key = "hf:datasets:all:stream"
zset_key = "hf:datasets:all:zset"
hash_key = "hf:datasets:all:hash"
try:
log.info(f"[process_datasets_page] Requesting {HF_API_URL} with params={params}")
response = requests.get(HF_API_URL, headers=headers, params=params, timeout=120)
response.raise_for_status()
page_items = response.json()
log.info(f"[process_datasets_page] Received {len(page_items)} datasets at offset {offset}")
dataset_ids = [ds.get("id") for ds in page_items]
size_map = asyncio.run(_fetch_sizes(dataset_ids))
for ds in page_items:
dataset_id = ds.get("id")
size_bytes = size_map.get(dataset_id)
downloads = ds.get("downloads")
likes = ds.get("likes")
impact_level, assessment_method = determine_impact_level_by_criteria(size_bytes, downloads, likes)
metrics = DatasetMetrics(size_bytes=size_bytes, downloads=downloads, likes=likes)
thresholds = {
"size_bytes": {
"low": str(100 * 1024 * 1024),
"medium": str(1 * 1024 * 1024 * 1024),
"high": str(10 * 1024 * 1024 * 1024)
}
}
impact_assessment = ImpactAssessment(
dataset_id=dataset_id,
impact_level=impact_level,
assessment_method=assessment_method,
metrics=metrics,
thresholds=thresholds
).model_dump()
item = {
"id": dataset_id,
"name": ds.get("name"),
"description": ds.get("description"),
"size_bytes": size_bytes,
"impact_level": impact_level.value if isinstance(impact_level, ImpactLevel) else impact_level,
"downloads": downloads,
"likes": likes,
"tags": ds.get("tags", []),
"impact_assessment": json.dumps(impact_assessment)
}
final_item = {}
for k, v in item.items():
if isinstance(v, list) or isinstance(v, dict):
final_item[k] = json.dumps(v)
elif v is None:
final_item[k] = 'null'
else:
final_item[k] = str(v)
redis_client.xadd(stream_key, final_item)
redis_client.zadd(zset_key, {dataset_id: offset})
redis_client.hset(hash_key, dataset_id, json.dumps(item))
log.info(f"[process_datasets_page] EXIT: Cached {len(page_items)} datasets at offset {offset}")
return len(page_items)
except Exception as exc:
log.error(f"[process_datasets_page] ERROR: offset={offset}, limit={limit}, exc={exc}", exc_info=True)
raise
def refresh_datasets_cache():
"""
Orchestrator: Enqueue Celery tasks to fetch all Hugging Face datasets in parallel.
Uses direct calls to HF API.
"""
import requests
log.info("[refresh_datasets_cache] Orchestrating dataset fetch tasks using direct HF API calls.")
token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if not token:
log.error("[refresh_datasets_cache] HUGGINGFACEHUB_API_TOKEN environment variable is not set.")
raise RuntimeError("HUGGINGFACEHUB_API_TOKEN environment variable is not set. Please set it securely.")
headers = {
"Authorization": f"Bearer {token}",
"User-Agent": "Mozilla/5.0 (compatible; CollinearTool/1.0; +https://yourdomain.com)"
}
limit = 500
params = {"limit": 1, "offset": 0}
try:
response = requests.get(HF_API_URL, headers=headers, params=params, timeout=120)
response.raise_for_status()
total_str = response.headers.get('X-Total-Count')
if not total_str:
log.error("[refresh_datasets_cache] 'X-Total-Count' header not found in HF API response.")
raise ValueError("'X-Total-Count' header missing from Hugging Face API response.")
total = int(total_str)
log.info(f"[refresh_datasets_cache] Total datasets reported by HF API: {total}")
except requests.RequestException as e:
log.error(f"[refresh_datasets_cache] Error fetching total dataset count from HF API: {e}")
raise
except ValueError as e:
log.error(f"[refresh_datasets_cache] Error parsing total dataset count: {e}")
raise
num_pages = (total + limit - 1) // limit
from app.tasks.dataset_tasks import fetch_datasets_page
from celery import group
tasks = []
for page_num in range(num_pages):
offset = page_num * limit
tasks.append(fetch_datasets_page.s(offset, limit))
log.info(f"[refresh_datasets_cache] Scheduled page at offset {offset}, limit {limit}.")
if tasks:
group(tasks).apply_async()
log.info(f"[refresh_datasets_cache] Enqueued {len(tasks)} fetch tasks.")
else:
log.warning("[refresh_datasets_cache] No dataset pages found to schedule.")
def determine_impact_level_by_criteria(size_bytes, downloads=None, likes=None):
try:
size = int(size_bytes) if size_bytes not in (None, 'null') else 0
except Exception:
size = 0
# Prefer size_bytes if available
if size >= 10 * 1024 * 1024 * 1024:
return ("high", "large_size")
elif size >= 1 * 1024 * 1024 * 1024:
return ("medium", "medium_size")
elif size >= 100 * 1024 * 1024:
return ("low", "small_size")
# Fallback to downloads if size_bytes is missing or too small
if downloads is not None:
try:
downloads = int(downloads)
if downloads >= 100000:
return ("high", "downloads")
elif downloads >= 10000:
return ("medium", "downloads")
elif downloads >= 1000:
return ("low", "downloads")
except Exception:
pass
# Fallback to likes if downloads is missing
if likes is not None:
try:
likes = int(likes)
if likes >= 1000:
return ("high", "likes")
elif likes >= 100:
return ("medium", "likes")
elif likes >= 10:
return ("low", "likes")
except Exception:
pass
return ("not_available", "size_and_downloads_and_likes_unknown")
def get_dataset_size(dataset: dict, dataset_id: str = None):
"""
Extract the size in bytes from a dataset dictionary.
Tries multiple locations based on possible HuggingFace API responses.
"""
# Try top-level key
size_bytes = dataset.get("size_bytes")
if size_bytes not in (None, 'null'):
return size_bytes
# Try nested structure from the size API
size_bytes = (
dataset.get("size", {})
.get("dataset", {})
.get("num_bytes_original_files")
)
if size_bytes not in (None, 'null'):
return size_bytes
# Try metrics or info sub-dictionaries if present
for key in ["metrics", "info"]:
sub = dataset.get(key, {})
if isinstance(sub, dict):
size_bytes = sub.get("size_bytes")
if size_bytes not in (None, 'null'):
return size_bytes
# Not found
return None
async def get_datasets_page_from_zset_async(offset: int = 0, limit: int = 10, search: str = None) -> dict:
redis_client = aioredis.Redis(host="redis", port=6379, db=0, decode_responses=True)
zset_key = "hf:datasets:all:zset"
hash_key = "hf:datasets:all:hash"
total = await redis_client.zcard(zset_key)
ids = await redis_client.zrange(zset_key, offset, offset + limit - 1)
if not ids:
return {"items": [], "count": total}
items = await redis_client.hmget(hash_key, ids)
parsed = []
for raw in items:
if not raw:
continue
try:
item = json.loads(raw)
parsed.append(item)
except Exception:
continue
if search:
parsed = [d for d in parsed if search.lower() in (d.get("id") or "").lower()]
return {"items": parsed, "count": total}
async def get_dataset_commits_async(dataset_id: str, limit: int = 20):
from huggingface_hub import HfApi
import logging
log = logging.getLogger(__name__)
api = HfApi()
log.info(f"[get_dataset_commits_async] Fetching commits for dataset_id={dataset_id}")
try:
# huggingface_hub is sync, so run in threadpool
import anyio
commits = await anyio.to_thread.run_sync(api.list_repo_commits, repo_id=dataset_id, repo_type="dataset")
log.info(f"[get_dataset_commits_async] Received {len(commits)} commits for {dataset_id}")
except Exception as e:
log.error(f"[get_dataset_commits_async] Error fetching commits for {dataset_id}: {e}", exc_info=True)
raise
result = []
for c in commits[:limit]:
try:
commit_id = getattr(c, "commit_id", "")
title = getattr(c, "title", "")
message = getattr(c, "message", title)
authors = getattr(c, "authors", [])
author_name = authors[0] if authors and isinstance(authors, list) else ""
created_at = getattr(c, "created_at", None)
if created_at:
if hasattr(created_at, "isoformat"):
date = created_at.isoformat()
else:
date = str(created_at)
else:
date = ""
result.append({
"id": commit_id or "",
"title": title or message or "",
"message": message or title or "",
"author": {"name": author_name, "email": ""},
"date": date,
})
except Exception as e:
log.error(f"[get_dataset_commits_async] Error parsing commit: {e} | Commit: {getattr(c, '__dict__', str(c))}", exc_info=True)
log.info(f"[get_dataset_commits_async] Returning {len(result)} parsed commits for {dataset_id}")
return result
async def get_dataset_files_async(dataset_id: str) -> List[str]:
from huggingface_hub import HfApi
import anyio
api = HfApi()
# huggingface_hub is sync, so run in threadpool
return await anyio.to_thread.run_sync(api.list_repo_files, repo_id=dataset_id, repo_type="dataset")
async def get_file_url_async(dataset_id: str, filename: str, revision: Optional[str] = None) -> str:
from huggingface_hub import hf_hub_url
import anyio
# huggingface_hub is sync, so run in threadpool
return await anyio.to_thread.run_sync(hf_hub_url, repo_id=dataset_id, filename=filename, repo_type="dataset", revision=revision)
# Fetch and cache all datasets
class EnhancedJSONEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, datetime):
return obj.isoformat()
return super().default(obj)
async def fetch_size(session, dataset_id, token=None):
url = f"https://datasets-server.huggingface.co/size?dataset={dataset_id}"
headers = {"Authorization": f"Bearer {token}"} if token else {}
try:
resp = await session.get(url, headers=headers, timeout=30)
if resp.status_code == 200:
data = resp.json()
return dataset_id, data.get("size", {}).get("dataset", {}).get("num_bytes_original_files")
except Exception as e:
log.warning(f"Could not fetch size for {dataset_id}: {e}")
return dataset_id, None
async def fetch_all_sizes(dataset_ids, token=None, batch_size=50):
results = {}
async with httpx.AsyncClient() as session:
for i in range(0, len(dataset_ids), batch_size):
batch = dataset_ids[i:i+batch_size]
tasks = [fetch_size(session, ds_id, token) for ds_id in batch]
batch_results = await asyncio.gather(*tasks)
for ds_id, size in batch_results:
results[ds_id] = size
return results
def fetch_and_cache_all_datasets(token: str):
api = HfApi(token=token)
log.info("Fetching all datasets from Hugging Face Hub...")
all_datasets = list(api.list_datasets())
all_datasets_dicts = []
dataset_ids = [d.id for d in all_datasets]
# Fetch all sizes in batches
sizes = asyncio.run(fetch_all_sizes(dataset_ids, token=token, batch_size=50))
for d in all_datasets:
data = d.__dict__
size_bytes = sizes.get(d.id)
downloads = data.get("downloads")
likes = data.get("likes")
data["size_bytes"] = size_bytes
impact_level, _ = determine_impact_level_by_criteria(size_bytes, downloads, likes)
data["impact_level"] = impact_level
all_datasets_dicts.append(data)
compressed = gzip.compress(json.dumps(all_datasets_dicts, cls=EnhancedJSONEncoder).encode("utf-8"))
r = redis.Redis(host="redis", port=6379, decode_responses=False)
r.set(REDIS_KEY, compressed)
log.info(f"Cached {len(all_datasets_dicts)} datasets in Redis under {REDIS_KEY}")
return len(all_datasets_dicts)
# Native pagination from cache
def get_datasets_page_from_cache(limit: int, offset: int):
r = redis.Redis(host="redis", port=6379, decode_responses=False)
compressed = r.get(REDIS_KEY)
if not compressed:
return {"error": "Cache not found. Please refresh datasets."}, 404
all_datasets = json.loads(gzip.decompress(compressed).decode("utf-8"))
total = len(all_datasets)
if offset < 0 or offset >= total:
return {"error": "Offset out of range.", "total": total}, 400
page = all_datasets[offset:offset+limit]
total_pages = (total + limit - 1) // limit
current_page = (offset // limit) + 1
next_page = current_page + 1 if offset + limit < total else None
prev_page = current_page - 1 if current_page > 1 else None
return {
"total": total,
"current_page": current_page,
"total_pages": total_pages,
"next_page": next_page,
"prev_page": prev_page,
"items": page
}, 200 |