import gradio as gr import torch import numpy as np import random import spaces from diffusers import FluxPipeline MAX_SEED = np.iinfo(np.int32).max # Available LoRAs LORA_OPTIONS = { "None": None, "Add Details": "Shakker-Labs/FLUX.1-dev-LoRA-add-details", "Merlin Turbo Alpha": "its-magick/merlin-turbo-alpha", "Flux Realism": "its-magick/flux-realism", "Perfection Style v1": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/perfection%20style%20v1.safetensors", "Canopus Face Realism": "https://huggingface.co/its-magick/merlin-test-loras/resolve/main/Canopus-LoRA-Flux-FaceRealism.safetensors" } # Global variables to track current LoRA current_lora = None current_lora_strength = 0.8 @spaces.GPU(duration=60) def generate_image(prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale, lora_choice, lora_strength): global current_lora, current_lora_strength if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # Handle LoRA loading/unloading selected_lora = LORA_OPTIONS.get(lora_choice) if selected_lora != current_lora or lora_strength != current_lora_strength: # Unload current LoRA if any if current_lora is not None: pipe.unload_lora_weights() # Load new LoRA if selected if selected_lora is not None: pipe.load_lora_weights(selected_lora) current_lora = selected_lora current_lora_strength = lora_strength else: current_lora = None current_lora_strength = 0.8 # Generate image if current_lora is not None: image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator, cross_attention_kwargs={"scale": lora_strength}, return_dict=False )[0] else: image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator, return_dict=False )[0] return image, seed # Load model pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) pipe.to("cuda") # Gradio interface with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# FLUX.1 Schnell Image Generator") with gr.Row(): with gr.Column(scale=1): prompt = gr.Textbox( label="Prompt", placeholder="Enter your image description...", lines=3 ) with gr.Row(): generate_btn = gr.Button("Generate Image", variant="primary") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42 ) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) width = gr.Slider( label="Width", minimum=256, maximum=1024, step=8, value=1024 ) height = gr.Slider( label="Height", minimum=256, maximum=1024, step=8, value=1024 ) num_inference_steps = gr.Slider( label="Inference Steps", minimum=1, maximum=4, step=1, value=4 ) guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.0, maximum=3.5, step=0.1, value=0.0 ) lora_choice = gr.Dropdown( label="LoRA Model", choices=list(LORA_OPTIONS.keys()), value="None" ) lora_strength = gr.Slider( label="LoRA Strength", minimum=0.0, maximum=2.0, step=0.1, value=0.8 ) with gr.Column(scale=1): output_image = gr.Image(label="Generated Image") output_seed = gr.Number(label="Used Seed") # Examples with gr.Row(): gr.Markdown("**Example prompts:** a tiny astronaut hatching from an egg on the moon • a cat holding a sign that says hello world • an anime illustration of a wiener schnitzel") # Connect the generate button generate_btn.click( fn=generate_image, inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale, lora_choice, lora_strength], outputs=[output_image, output_seed] ) if __name__ == "__main__": demo.launch(share=True)