import gradio as gr from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch # Load the base model base_model = "stabilityai/stable-diffusion-xl-base-1.0" lora_model = "itsVilen/Mspaint" pipe = StableDiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) # Load the LoRA weights pipe.load_lora_weights(lora_model) pipe.to("cuda") def generate_image(prompt): try: # Generate an image from the prompt image = pipe(prompt).images[0] return image except Exception as e: return str(e) iface = gr.Interface( fn=generate_image, inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), outputs=gr.Image(type="pil"), title="Text to Image Generation", description="Enter a text prompt and generate an image using the itsVilen/Mspaint model.", ) iface.launch()