# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Any, Optional from transformers import TrainingArguments @dataclass class BCOConfig(TrainingArguments): r""" Configuration class for the [`BCOTrainer`]. This class includes only the parameters that are specific to BCO training. For a full list of training arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may differ from those in [`~transformers.TrainingArguments`]. Using [`~transformers.HfArgumentParser`] we can turn this class into [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the command line. Parameters: max_length (`int` or `None`, *optional*, defaults to `1024`): Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want to use the default data collator. max_prompt_length (`int` or `None`, *optional*, defaults to `512`): Maximum length of the prompt. This argument is required if you want to use the default data collator. max_completion_length (`int` or `None`, *optional*, defaults to `None`): Maximum length of the completion. This argument is required if you want to use the default data collator and your model is an encoder-decoder. beta (`float`, *optional*, defaults to `0.1`): Parameter controlling the deviation from the reference model. Higher β means less deviation from the reference model. label_pad_token_id (`int`, *optional*, defaults to `-100`): Label pad token id. This argument is required if you want to use the default data collator. padding_value (`int` or `None`, *optional*, defaults to `None`): Padding value to use. If `None`, the padding value of the tokenizer is used. truncation_mode (`str`, *optional*, defaults to `"keep_end"`): Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`. This argument is required if you want to use the default data collator. disable_dropout (`bool`, *optional*, defaults to `True`): Whether to disable dropout in the model and reference model. generate_during_eval (`bool`, *optional*, defaults to `False`): If `True`, generates and logs completions from both the model and the reference model to W&B or Comet during evaluation. is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`): When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument, you need to specify if the model returned by the callable is an encoder-decoder model. precompute_ref_log_probs (`bool`, *optional*, defaults to `False`): Whether to precompute reference model log probabilities for training and evaluation datasets. This is useful when training without the reference model to reduce the total GPU memory needed. model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a string. ref_model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the reference model from a string. dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): Number of processes to use for processing the dataset. prompt_sample_size (`int`, *optional*, defaults to `1024`): Number of prompts that are fed to density ratio classifier. min_density_ratio (`float`, *optional*, defaults to `0.5`): Minimum value of the density ratio. The estimated density ratio is clamped to this value. max_density_ratio (`float`, *optional*, defaults to `10.0`): Maximum value of the density ratio. The estimated density ratio is clamped to this value. """ _VALID_DICT_FIELDS = TrainingArguments._VALID_DICT_FIELDS + ["model_init_kwargs", "ref_model_init_kwargs"] # Parameters whose default values are overridden from TrainingArguments logging_steps: float = field( default=10, metadata={ "help": ( "Log every X updates steps. Should be an integer or a float in range `[0,1)`. " "If smaller than 1, will be interpreted as ratio of total training steps." ) }, ) bf16: bool = field( default=True, metadata={ "help": ( "Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA " "architecture or using CPU (use_cpu) or Ascend NPU. This is an experimental API and it may change." ) }, ) max_length: Optional[int] = field( default=1024, metadata={ "help": "Maximum length of the sequences (prompt + completion) in the batch. " "This argument is required if you want to use the default data collator." }, ) max_prompt_length: Optional[int] = field( default=512, metadata={ "help": "Maximum length of the prompt. " "This argument is required if you want to use the default data collator." }, ) max_completion_length: Optional[int] = field( default=None, metadata={ "help": "Maximum length of the completion. This argument is required if you want to use the " "default data collator and your model is an encoder-decoder." }, ) beta: float = field( default=0.1, metadata={ "help": "Parameter controlling the deviation from the reference model. " "Higher β means less deviation from the reference model." }, ) label_pad_token_id: int = field( default=-100, metadata={ "help": "Label pad token id. This argument is required if you want to use the default data collator." }, ) padding_value: Optional[int] = field( default=None, metadata={"help": "Padding value to use. If `None`, the padding value of the tokenizer is used."}, ) truncation_mode: str = field( default="keep_end", metadata={ "help": "Truncation mode to use when the prompt is too long. Possible values are " "`keep_end` or `keep_start`. This argument is required if you want to use the " "default data collator." }, ) disable_dropout: bool = field( default=True, metadata={"help": "Whether to disable dropout in the model and reference model."}, ) generate_during_eval: bool = field( default=False, metadata={ "help": "If `True`, generates and logs completions from both the model and the reference model " "to W&B during evaluation." }, ) is_encoder_decoder: Optional[bool] = field( default=None, metadata={ "help": "When using the `model_init` argument (callable) to instantiate the model instead of the " "`model` argument, you need to specify if the model returned by the callable is an " "encoder-decoder model." }, ) precompute_ref_log_probs: bool = field( default=False, metadata={ "help": "Whether to precompute reference model log probabilities for training and evaluation datasets. " "This is useful when training without the reference model to reduce the total GPU memory " "needed." }, ) model_init_kwargs: Optional[dict[str, Any]] = field( default=None, metadata={ "help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the " "model from a string." }, ) ref_model_init_kwargs: Optional[dict[str, Any]] = field( default=None, metadata={ "help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the " "reference model from a string." }, ) dataset_num_proc: Optional[int] = field( default=None, metadata={"help": "Number of processes to use for processing the dataset."}, ) prompt_sample_size: int = field( default=1024, metadata={"help": "Number of prompts that are fed to density ratio classifier."}, ) min_density_ratio: float = field( default=0.5, metadata={"help": "Minimum value of the density ratio. The estimated density ratio is clamped to this value."}, ) max_density_ratio: float = field( default=10.0, metadata={"help": "Maximum value of the density ratio. The estimated density ratio is clamped to this value."}, )