# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import textwrap import warnings from collections import defaultdict, deque from collections.abc import Sized from contextlib import nullcontext from functools import partial from pathlib import Path from typing import Any, Callable, Optional, Union import datasets import torch import torch.utils.data import transformers from accelerate.utils import broadcast_object_list, gather, gather_object, is_peft_model, set_seed from datasets import Dataset, IterableDataset from packaging import version from torch import nn from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.utils.data import DataLoader, Sampler from transformers import ( AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, GenerationConfig, PreTrainedModel, PreTrainedTokenizerBase, Trainer, TrainerCallback, is_wandb_available, ) from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled from transformers.trainer_utils import seed_worker from transformers.utils import is_datasets_available, is_peft_available, is_rich_available from ..data_utils import apply_chat_template, is_conversational, maybe_apply_chat_template from ..extras.profiling import profiling_context, profiling_decorator from ..extras.vllm_client import VLLMClient from ..import_utils import is_liger_kernel_available, is_vllm_available from ..models import create_reference_model, prepare_deepspeed, prepare_fsdp, unwrap_model_for_generation from ..models.utils import _ForwardRedirection from .callbacks import SyncRefModelCallback from .grpo_config import GRPOConfig from .utils import ( disable_dropout_in_model, generate_model_card, get_comet_experiment_url, pad, print_prompt_completions_sample, selective_log_softmax, ) if is_peft_available(): from peft import PeftConfig, get_peft_model if is_liger_kernel_available(): from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss if is_vllm_available(): from vllm import LLM, SamplingParams from vllm.sampling_params import GuidedDecodingParams if is_wandb_available(): import wandb # What we call a reward function is a callable that takes a list of prompts and completions and returns a list of # rewards. When it's a string, it's a model ID, so it's loaded as a pretrained model. RewardFunc = Union[str, PreTrainedModel, Callable[[list, list], list[float]]] class RepeatSampler(Sampler): """ Sampler that repeats the indices of a dataset in a structured manner. Args: data_source (`Sized`): Dataset to sample from. mini_repeat_count (`int`): Number of times to repeat each index per batch. batch_size (`int`, *optional*, defaults to `1`): Number of unique indices per batch. repeat_count (`int`, *optional*, defaults to `1`): Number of times to repeat the full sampling process. shuffle (`bool`, *optional*, defaults to `True`): Whether to shuffle the dataset. seed (`int` or `None`, *optional*, defaults to `None`): Random seed for reproducibility (only affects this sampler). Example: ```python >>> sampler = RepeatRandomSampler(["a", "b", "c", "d", "e", "f", "g"], mini_repeat_count=2, batch_size=3, repeat_count=4) >>> list(sampler) [4, 4, 3, 3, 0, 0, 4, 4, 3, 3, 0, 0, 4, 4, 3, 3, 0, 0, 4, 4, 3, 3, 0, 0, 1, 1, 2, 2, 6, 6, 1, 1, 2, 2, 6, 6, 1, 1, 2, 2, 6, 6, 1, 1, 2, 2, 6, 6] ``` ```txt mini_repeat_count = 3 - - - [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, | 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, | 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, | repeat_count = 2 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, | 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, | 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, ...] | --------- --------- --------- --------- --------- --------- --------- --------- --------- --------- --------- --------- batch_size = 12 ``` """ def __init__( self, data_source: Sized, mini_repeat_count: int, batch_size: int = 1, repeat_count: int = 1, shuffle: bool = True, seed: Optional[int] = None, ): self.data_source = data_source self.mini_repeat_count = mini_repeat_count self.batch_size = batch_size self.repeat_count = repeat_count self.num_samples = len(data_source) self.shuffle = shuffle self.seed = seed if shuffle: self.generator = torch.Generator() # Create a local random generator if seed is not None: self.generator.manual_seed(seed) def __iter__(self): if self.shuffle: # E.g., [2, 4, 3, 1, 0, 6, 5] (num_samples = 7) indexes = torch.randperm(self.num_samples, generator=self.generator).tolist() else: indexes = list(range(self.num_samples)) # [2, 4, 3, 1, 0, 6, 5] # -> [[2, 4, 3], [1, 0, 6], [5]] (batch_size = 3) indexes = [indexes[i : i + self.batch_size] for i in range(0, len(indexes), self.batch_size)] # [[2, 4, 3], [1, 0, 6], [5]] # -> [[2, 4, 3], [1, 0, 6]] indexes = [chunk for chunk in indexes if len(chunk) == self.batch_size] for chunk in indexes: for _ in range(self.repeat_count): for index in chunk: for _ in range(self.mini_repeat_count): yield index def __len__(self) -> int: return self.num_samples * self.mini_repeat_count * self.repeat_count # torch.nanstd doesn't exist, so we define it here def nanstd(tensor: torch.Tensor) -> torch.Tensor: """ Compute the standard deviation of a tensor, ignoring NaNs. This function only supports 1D tensors. Args: tensor (`torch.Tensor`): Input tensor of shape `(N,)`. Returns: `torch.Tensor`: Standard deviation of the tensor, ignoring NaNs. """ variance = torch.nanmean((tensor - torch.nanmean(tensor, keepdim=True)) ** 2) # Compute variance ignoring NaNs count = torch.sum(~torch.isnan(tensor)) # Count of non-NaN values variance *= count / (count - 1) # Bessel's correction return torch.sqrt(variance) def split_tensor_dict( tensor_dict: dict[str, Optional[torch.Tensor]], num_chunks: int ) -> list[dict[str, Optional[torch.Tensor]]]: """ Splits a dictionary of tensors along the first dimension into `num_chunks` equal parts. Example: >>> x = torch.arange(12).reshape(6, 2) >>> y = torch.arange(6).reshape(6, 1) >>> tensor_dict = {"x": x, "y": y} >>> split_tensor_dict(tensor_dict, 3) [ {"x": tensor([[0, 1], [2, 3]]), "y": tensor([[0], [1]])}, {"x": tensor([[4, 5], [6, 7]]), "y": tensor([[2], [3]])}, {"x": tensor([[ 8, 9], [10, 11]]), "y": tensor([[4], [5]])} ] """ first_tensor = next(tensor for tensor in tensor_dict.values() if tensor is not None) chunk_size = first_tensor.shape[0] // num_chunks return [ { key: tensor[i * chunk_size : (i + 1) * chunk_size] if tensor is not None else None for key, tensor in tensor_dict.items() } for i in range(num_chunks) ] def shuffle_tensor_dict(tensor_dict: dict[str, Optional[torch.Tensor]]) -> dict[str, Optional[torch.Tensor]]: """ Shuffles a dictionary of tensors along the first dimension in unison. Example: >>> x = torch.arange(6).reshape(3, 2) >>> y = torch.arange(3).reshape(3, 1) >>> tensor_dict = {"x": x, "y": y} >>> shuffle_tensor_dict(tensor_dict) {'x': tensor([[2, 3], [0, 1], [4, 5]]), 'y': tensor([[1], [0], [2]])} """ first_tensor = next(tensor for tensor in tensor_dict.values() if tensor is not None) batch_size = first_tensor.shape[0] permutation = torch.randperm(batch_size) return {key: tensor[permutation] if tensor is not None else None for key, tensor in tensor_dict.items()} def nanmin(tensor: torch.Tensor) -> torch.Tensor: """ Compute the minimum value of a tensor, ignoring NaNs. This function only supports 1D tensors. Args: tensor (`torch.Tensor`): Input tensor of shape `(N,)`. Returns: `torch.Tensor`: Minimum value of the tensor, ignoring NaNs. Returns NaN if all values are NaN. """ if torch.isnan(tensor).all(): return torch.tensor(float("nan"), dtype=tensor.dtype, device=tensor.device) return torch.min(tensor[~torch.isnan(tensor)]) def nanmax(tensor: torch.Tensor) -> torch.Tensor: """ Compute the maximum value of a tensor, ignoring NaNs. This function only supports 1D tensors. Args: tensor (`torch.Tensor`): Input tensor of shape `(N,)`. Returns: `torch.Tensor`: Maximum value of the tensor, ignoring NaNs. Returns NaN if all values are NaN. """ if torch.isnan(tensor).all(): return torch.tensor(float("nan"), dtype=tensor.dtype, device=tensor.device) return torch.max(tensor[~torch.isnan(tensor)]) def identity(x): """Do we really need docs for this?""" return x class GRPOTrainer(Trainer): """ Trainer for the Group Relative Policy Optimization (GRPO) method. This algorithm was initially proposed in the paper [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). Example: ```python from datasets import load_dataset from trl import GRPOTrainer dataset = load_dataset("trl-lib/tldr", split="train") def reward_func(completions, **kwargs): # Dummy reward function that rewards completions with more unique letters. return [float(len(set(completion))) for completion in completions] trainer = GRPOTrainer( model="Qwen/Qwen2-0.5B-Instruct", reward_funcs=reward_func, train_dataset=dataset, ) trainer.train() ``` Args: model (`Union[str, PreTrainedModel]`): Model to be trained. Can be either: - A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a path to a *directory* containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keywork arguments in `args.model_init_kwargs`. - A [`~transformers.PreTrainedModel`] object. Only causal language models are supported. reward_funcs (`Union[RewardFunc, list[RewardFunc]]`): Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward functions with the prompts and completions and sum the rewards. Can be either: - A single reward function, such as: - A string: The *model ID* of a pretrained model hosted inside a model repo on huggingface.co, or a path to a *directory* containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded using [`~transformers.AutoModelForSequenceClassification.from_pretrained`] with `num_labels=1` and the keyword arguments in `args.model_init_kwargs`. - A [`~transformers.PreTrainedModel`] object: Only sequence classification models are supported. - A custom reward function: The function is provided with the prompts and the generated completions, plus any additional columns in the dataset. It should return a list of rewards. Custom reward functions can also return None when the reward is not applicable to those samples. This is useful for multi-task training where different reward functions apply to different types of samples. When a reward function returns None for a sample, that reward function is excluded from the reward calculation for that sample. For more details, see [Using a custom reward function](#using-a-custom-reward-function). - A list of reward functions, where each item can independently be any of the above types. Mixing different types within the list (e.g., a string model ID and a custom reward function) is allowed. args ([`GRPOConfig`], *optional*, defaults to `None`): Configuration for this trainer. If `None`, a default configuration is used. train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]): Dataset to use for training. It must include a column `"prompt"`. Any additional columns in the dataset is ignored. The format of the samples can be either: - [Standard](dataset_formats#standard): Each sample contains plain text. - [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role and content). eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`): Dataset to use for evaluation. It must meet the same requirements as `train_dataset`. processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`): Processing class used to process the data. The padding side must be set to "left". If `None`, the processing class is loaded from the model's name with [`~transformers.AutoTokenizer.from_pretrained`]. A padding token, `processing_class.pad_token`, must be set. If the processing class has not set a padding token, `processing_class.eos_token` will be used as the default. reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*, defaults to `None`): Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either: - A single processing class: Used when `reward_funcs` contains only one reward function. - A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`. If set to `None`, or if an element of the list corresponding to a [`~transformers.PreTrainedModel`] is `None`, the tokenizer for the model is automatically loaded using [`~transformers.AutoTokenizer.from_pretrained`]. For elements in `reward_funcs` that are custom reward functions (not [`~transformers.PreTrainedModel`]), the corresponding entries in `reward_processing_classes` are ignored. callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`): List of callbacks to customize the training loop. Will add those to the list of default callbacks detailed in [here](https://huggingface.co/docs/transformers/main_classes/callback). If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`] method. optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`): A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`. peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`): PEFT configuration used to wrap the model. If `None`, the model is not wrapped. """ _tag_names = ["trl", "grpo"] def __init__( self, model: Union[str, PreTrainedModel], reward_funcs: Union[RewardFunc, list[RewardFunc]], args: Optional[GRPOConfig] = None, train_dataset: Optional[Union[Dataset, IterableDataset]] = None, eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None, processing_class: Optional[PreTrainedTokenizerBase] = None, reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None, callbacks: Optional[list[TrainerCallback]] = None, optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None), peft_config: Optional["PeftConfig"] = None, ): # Args if args is None: model_name = model if isinstance(model, str) else model.config._name_or_path model_name = model_name.split("/")[-1] args = GRPOConfig(f"{model_name}-GRPO") # Models # Trained model model_init_kwargs = args.model_init_kwargs or {} if isinstance(model, str): model_id = model torch_dtype = model_init_kwargs.get("torch_dtype") if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None: pass # torch_dtype is already a torch.dtype or "auto" or None elif isinstance(torch_dtype, str): # it's a str, but not "auto" torch_dtype = getattr(torch, torch_dtype) model_init_kwargs["torch_dtype"] = torch_dtype else: raise ValueError( "Invalid `torch_dtype` passed to `GRPOConfig`. Expected either 'auto' or a string representing " f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}." ) # Disable caching if gradient checkpointing is enabled (not supported) model_init_kwargs["use_cache"] = ( False if args.gradient_checkpointing else model_init_kwargs.get("use_cache") ) model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) else: model_id = model.config._name_or_path if args.model_init_kwargs is not None: raise ValueError( "You passed `model_init_kwargs` to the `GRPOConfig`, but your model is already instantiated. " "This argument can only be used when the `model` argument is a string." ) if peft_config is not None: if not is_peft_available(): raise ImportError("PEFT is required to use `peft_config`. Run `pip install peft`.") model = get_peft_model(model, peft_config) # Enable gradient checkpointing if requested if args.gradient_checkpointing: model = self._enable_gradient_checkpointing(model, args) # Processing class if processing_class is None: processing_class = AutoTokenizer.from_pretrained(model.config._name_or_path, padding_side="left") if processing_class.pad_token is None: processing_class.pad_token = processing_class.eos_token # Reward functions if not isinstance(reward_funcs, list): reward_funcs = [reward_funcs] self.reward_func_names = [] for i, reward_func in enumerate(reward_funcs): if isinstance(reward_func, str): reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained( reward_func, num_labels=1, **model_init_kwargs ) if isinstance(reward_funcs[i], nn.Module): # Use Module over PretrainedModel for compat w/ compiled models self.reward_func_names.append(reward_funcs[i].config._name_or_path.split("/")[-1]) else: self.reward_func_names.append(reward_funcs[i].__name__) self.reward_funcs = reward_funcs # Reward weights if args.reward_weights is not None: if len(args.reward_weights) != len(reward_funcs): raise ValueError( f"Number of reward weights ({len(args.reward_weights)}) must match number of reward " f"functions ({len(reward_funcs)})" ) self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32) else: self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32) # Reward processing class if reward_processing_classes is None: reward_processing_classes = [None] * len(reward_funcs) elif not isinstance(reward_processing_classes, list): reward_processing_classes = [reward_processing_classes] else: if len(reward_processing_classes) != len(reward_funcs): raise ValueError("The number of reward processing classes must match the number of reward functions.") for i, (reward_processing_class, reward_func) in enumerate(zip(reward_processing_classes, reward_funcs)): if isinstance(reward_func, PreTrainedModel): if reward_processing_class is None: reward_processing_class = AutoTokenizer.from_pretrained(reward_func.config._name_or_path) if reward_processing_class.pad_token_id is None: reward_processing_class.pad_token = reward_processing_class.eos_token # The reward model computes the reward for the latest non-padded token in the input sequence. # So it's important to set the pad token ID to the padding token ID of the processing class. reward_func.config.pad_token_id = reward_processing_class.pad_token_id reward_processing_classes[i] = reward_processing_class self.reward_processing_classes = reward_processing_classes # Training arguments self.max_prompt_length = args.max_prompt_length self.max_completion_length = args.max_completion_length # = |o_i| in the GRPO paper self.num_generations = args.num_generations # = G in the GRPO paper self.temperature = args.temperature self.top_p = args.top_p self.top_k = args.top_k self.min_p = args.min_p self.repetition_penalty = args.repetition_penalty self.use_vllm = args.use_vllm self.vllm_mode = args.vllm_mode self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization # only applies to colocation mode self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size # only applies to colocation mode self.use_liger_loss = args.use_liger_loss self.loss_type = args.loss_type self.scale_rewards = args.scale_rewards self.mask_truncated_completions = args.mask_truncated_completions # Datasets self.shuffle_dataset = args.shuffle_dataset if ( isinstance(train_dataset, IterableDataset) or isinstance(eval_dataset, IterableDataset) or ( isinstance(eval_dataset, dict) and any(isinstance(ds, IterableDataset) for ds in eval_dataset.values()) ) ): # See https://github.com/huggingface/trl/issues/3213 raise NotImplementedError( "Iterable datasets are not yet supported in GRPOTrainer. Please use a standard dataset instead." ) # Multi-step self.num_iterations = args.num_iterations # = 𝜇 in the GRPO paper self.epsilon_low = args.epsilon self.epsilon_high = args.epsilon_high if args.epsilon_high is not None else args.epsilon # Tracks the number of iterations (forward + backward passes), including those within a grad accum cycle self._step = 0 # Buffer the batch to reuse generated outputs across multiple updates. For more details, see # `_get_train_sampler` and `_prepare_inputs`. self._buffered_inputs = None # The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the # input tensor associated with the key "input_ids". However, in GRPO, the sampled data does not include the # "input_ids" key. Instead, the available keys is "prompt". As a result, the trainer issues the warning: # "Could not estimate the number of tokens of the input, floating-point operations will not be computed." To # suppress this warning, we set the "estimate_tokens" key in the model's "warnings_issued" dictionary to True. # This acts as a flag to indicate that the warning has already been issued. model.warnings_issued["estimate_tokens"] = True super().__init__( model=model, args=args, data_collator=identity, # No data collation is needed in GRPO train_dataset=train_dataset, eval_dataset=eval_dataset, processing_class=processing_class, callbacks=callbacks, optimizers=optimizers, ) # Reference model self.beta = args.beta if self.beta == 0.0: # If beta is 0.0, the reference model is not needed self.ref_model = None elif is_deepspeed_zero3_enabled() or self.is_fsdp_enabled: self.ref_model = AutoModelForCausalLM.from_pretrained(model_id, **model_init_kwargs) elif is_peft_model(model): # If PEFT is used, the reference model is not needed since the adapter can be disabled # to revert to the initial model. self.ref_model = None else: # If PEFT configuration is not provided, create a reference model based on the initial model. self.ref_model = create_reference_model(model) # Disable dropout in the models if args.disable_dropout: disable_dropout_in_model(model) if self.ref_model is not None: disable_dropout_in_model(self.ref_model) # Liger loss if self.use_liger_loss: if not is_liger_kernel_available(): raise ImportError( "Liger is required to use `liger_loss` as the GRPO loss. Run `pip install liger-kernel`." ) # redirect the model.module forward to the model forward to ensure pre-forward hooks are called self._forward_redirection = _ForwardRedirection() self.liger_grpo_loss = LigerFusedLinearGRPOLoss( beta=self.beta, epsilon_low=self.epsilon_low, epsilon_high=self.epsilon_high, temperature=self.temperature, use_ref_model=self.beta != 0.0, loss_type=self.loss_type, max_completion_length=self.max_completion_length, ) # Initialize the metrics self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)} self._total_train_tokens = 0 self.log_completions = args.log_completions self.wandb_log_unique_prompts = args.wandb_log_unique_prompts self.num_completions_to_print = args.num_completions_to_print # maxlen is set to the total number of forward passes per step. This value of `maxlen` ensures we log only the # final optimization step. maxlen = self.accelerator.num_processes * args.per_device_train_batch_size * args.steps_per_generation self._textual_logs = { "prompt": deque(maxlen=maxlen), "completion": deque(maxlen=maxlen), "rewards": defaultdict(lambda: deque(maxlen=maxlen)), "advantages": deque(maxlen=maxlen), } # Ensure each process receives a unique seed to prevent duplicate completions when generating with # transformers if num_generations exceeds per_device_train_batch_size. We could skip it if we use vLLM, but # it's safer to set it in all cases. set_seed(args.seed, device_specific=True) if self.use_vllm: if not is_vllm_available(): raise ImportError( "vLLM is not available and `use_vllm` is set to True. Please install vLLM with " "`pip install vllm` to use it." ) if self.vllm_mode == "server" and self.accelerator.is_main_process: if args.vllm_server_base_url is not None: base_url = args.vllm_server_base_url else: base_url = f"http://{args.vllm_server_host}:{args.vllm_server_port}" self.vllm_client = VLLMClient(base_url=base_url, connection_timeout=args.vllm_server_timeout) self.vllm_client.init_communicator() elif self.vllm_mode == "colocate": # Make sure vllm_tensor_parallel_size group size evenly divides the world size - each group should have # the same number of ranks if not self.accelerator.num_processes % self.vllm_tensor_parallel_size == 0: raise ValueError( f"vllm_tensor_parallel_size ({self.vllm_tensor_parallel_size}) must divide world size " f"({self.accelerator.num_processes}) evenly." ) if self.vllm_tensor_parallel_size > 1: # Create subgroups of ranks for TP, each group with `vllm_tensor_parallel_size` ranks. # For example, if world_size=8 and vllm_tensor_parallel_size=2 → groups: [0,1], [2,3], [4,5], [6,7] self.tp_group, _ = torch.distributed.new_subgroups_by_enumeration( [ list(range(i * self.vllm_tensor_parallel_size, (i + 1) * self.vllm_tensor_parallel_size)) for i in range(self.accelerator.num_processes // self.vllm_tensor_parallel_size) ] ) self.llm = LLM( model=model.name_or_path, tensor_parallel_size=args.vllm_tensor_parallel_size, gpu_memory_utilization=self.vllm_gpu_memory_utilization, max_num_seqs=self.args.per_device_train_batch_size * self.vllm_tensor_parallel_size * self.args.gradient_accumulation_steps, max_model_len=self.max_prompt_length + self.max_completion_length, distributed_executor_backend="external_launcher", # Feed identical seed for tp groups to ensure sampling results are the same across workers seed=self.accelerator.process_index // self.vllm_tensor_parallel_size, # Latest vLLM v1 memory profiler is misled by the high default value (i.e., 32768) - thinking there's not enough memory max_num_batched_tokens=4096, ) # vLLM specific sampling arguments self.guided_decoding_regex = args.vllm_guided_decoding_regex self._last_loaded_step = -1 # tag to avoid useless loading during grad accumulation # When using vLLM, the main process is responsible for loading the model weights. This can cause process # desynchronization and seems to lead to DeepSpeed hanging during initialization. To prevent this, we # synchronize all processes after vLLM has been fully initialized. self.accelerator.wait_for_everyone() else: self.generation_config = GenerationConfig( max_new_tokens=self.max_completion_length, do_sample=True, pad_token_id=processing_class.pad_token_id, bos_token_id=processing_class.bos_token_id, eos_token_id=processing_class.eos_token_id, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k, min_p=self.min_p, repetition_penalty=self.repetition_penalty, cache_implementation=args.cache_implementation, ) # Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the # model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set # self.model_accepts_loss_kwargs to False to enable scaling. self.model_accepts_loss_kwargs = False # Add tags to the model self.model.add_model_tags(self._tag_names) if self.ref_model is not None: if self.is_deepspeed_enabled: self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator) elif self.is_fsdp_enabled: self.ref_model = prepare_fsdp(self.ref_model, self.accelerator) else: self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) if args.sync_ref_model: self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator)) for i, reward_func in enumerate(self.reward_funcs): if isinstance(reward_func, PreTrainedModel): if self.is_deepspeed_enabled: self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator) else: # set device placement to True to make `prepare_model` move `reward_func` to device when using fsdp self.reward_funcs[i] = self.accelerator.prepare_model( reward_func, evaluation_mode=True, device_placement=True ) def _set_signature_columns_if_needed(self): # If `self.args.remove_unused_columns` is True, non-signature columns are removed. # By default, this method sets `self._signature_columns` to the model's expected inputs. # In GRPOTrainer, we preprocess data, so using the model's signature columns doesn't work. # Instead, we set them to the columns expected by the `training_step` method, hence the override. if self._signature_columns is None: self._signature_columns = ["prompt"] # This method overrides `Trainer.get_train_dataloader` to support our custom batching strategy. # Instead of returning a standard per-step batch (i.e., `per_device_batch_size), our dataloader loads an # *generation* batch (i.e., `per_device_batch_size × steps_per_generation`). This allows us to generate completions # once every steps_per_generation step—rather than once per accumulation step—which is significantly more # efficient. The only change from the original implementation is multiplying the batch size by # `steps_per_generation`. Thus, `_prepare_inputs` is called with this *generation* batch, and it handles the # splitting internally. # Maintenance note: This method is a copy-paste of the original `Trainer.get_train_dataloader` with only one line # modification. As a result, some parts of the method aren't relevant to GRPO, but we keep them to stay one line # apart from the super method, ensuring easier maintenance in the future. def get_train_dataloader(self): if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") train_dataset = self.train_dataset data_collator = self.data_collator if is_datasets_available() and isinstance(train_dataset, datasets.Dataset): train_dataset = self._remove_unused_columns(train_dataset, description="training") else: data_collator = self._get_collator_with_removed_columns(data_collator, description="training") dataloader_params = { "batch_size": self._train_batch_size * self.args.steps_per_generation, # < this is the change "collate_fn": data_collator, "num_workers": self.args.dataloader_num_workers, "pin_memory": self.args.dataloader_pin_memory, "persistent_workers": self.args.dataloader_persistent_workers, } if not isinstance(train_dataset, torch.utils.data.IterableDataset): dataloader_params["sampler"] = self._get_train_sampler() dataloader_params["drop_last"] = self.args.dataloader_drop_last if version.parse(transformers.__version__) >= version.parse("4.52.0"): # from transformers 4.52.0, the `seed_worker` requires the `num_workers` and `rank` arguments dataloader_params["worker_init_fn"] = partial( seed_worker, num_workers=self.args.dataloader_num_workers, rank=self.args.process_index ) else: dataloader_params["worker_init_fn"] = seed_worker dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params)) def _get_train_sampler(self, dataset: Optional[Dataset] = None) -> Sampler: # Returns a sampler that # 1. ensures each prompt is repeated across multiple processes. This guarantees that identical prompts are # distributed to different GPUs, allowing rewards to be computed and normalized correctly within each prompt # group. Using the same seed across processes ensures consistent prompt assignment, preventing discrepancies # in group formation. # 2. repeats the batch multiple times to allow reusing generations across multiple updates. Refer to # _prepare_inputs to see how the generations are stored and reused. # In the following figure, the values are the prompt indices. The first row shows the first sampled batch, the # second row shows the second sampled batch, and so on. # # | GPU 0 | GPU 1 | # # global_step step <-───> num_generations=2 # <-───────> per_device_train_batch_size=3 # grad_accum ▲ ▲ 0 0 0 0 1 1 2 2 <- Generate for the first `steps_per_generation` (prompts 0 to 11); store the completions; use the first slice to compute the loss # =2 ▼ | 0 1 3 3 4 4 5 5 <- Take the stored generations and use the second slice to compute the loss # | # | 1 2 6 6 7 7 8 8 <- Take the stored generations and use the third slice to compute the loss # steps_per_gen=4 ▼ 1 3 9 9 10 10 11 11 <- Take the stored generations and use the fourth slice to compute the loss # # 2 4 12 12 13 13 14 14 <- Generate for the second `steps_per_generation` (prompts 12 to 23); store the completions; use the first slice to compute the loss # 2 5 15 15 16 16 17 17 <- Take the stored generations and use the second slice to compute the loss # ... if dataset is None: dataset = self.train_dataset return RepeatSampler( data_source=dataset, mini_repeat_count=self.num_generations, batch_size=self.args.generation_batch_size // self.num_generations, repeat_count=self.num_iterations * self.args.steps_per_generation, shuffle=self.shuffle_dataset, seed=self.args.seed, ) def _get_eval_sampler(self, eval_dataset) -> Sampler: # See _get_train_sampler for an explanation of the sampler. return RepeatSampler( data_source=eval_dataset, mini_repeat_count=self.num_generations, seed=self.args.seed, ) def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: GRPOConfig) -> PreTrainedModel: """Enables gradient checkpointing for the model.""" # Ensure use_cache is disabled model.config.use_cache = False # Enable gradient checkpointing on the base model for PEFT if is_peft_model(model): model.base_model.gradient_checkpointing_enable() # Enable gradient checkpointing for non-PEFT models else: model.gradient_checkpointing_enable() gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {} use_reentrant = ( "use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"] ) if use_reentrant: model.enable_input_require_grads() return model @profiling_decorator def _get_last_hidden_state(self, unwrapped_model, input_ids, attention_mask, logits_to_keep=None): if is_peft_model(unwrapped_model): unwrapped_model = unwrapped_model.base_model.model last_hidden_state = unwrapped_model.model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state last_hidden_state = last_hidden_state[:, :-1, :] # (B, L-1, H) if logits_to_keep is not None: last_hidden_state = last_hidden_state[:, -logits_to_keep:, :] # (B, logits_to_keep, H) return last_hidden_state # Get the per-token log probabilities for the completions for the model and the reference model @profiling_decorator def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep, batch_size=None) -> torch.Tensor: batch_size = batch_size or input_ids.size(0) # Chunk inputs into smaller batches to reduce memory peak all_logps = [] for i in range(0, input_ids.size(0), batch_size): input_ids_batch = input_ids[i : i + batch_size] attention_mask_batch = attention_mask[i : i + batch_size] # We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded logits = model( input_ids=input_ids_batch, attention_mask=attention_mask_batch, logits_to_keep=logits_to_keep + 1 ).logits logits = logits[:, :-1, :] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred input_ids_batch = input_ids_batch[:, -logits_to_keep:] # Divide logits by sampling temperature. # See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details logits = logits / self.temperature logps = selective_log_softmax(logits, input_ids_batch) # compute logprobs for the input tokens all_logps.append(logps) return torch.cat(all_logps, dim=0) def _sync_fsdp_params_to_vllm(self, module: nn.Module, prefix: str = "", visited=None): """Memory-efficient post-order traversal of FSDP modules to extract full parameters and sync with vLLM.""" if visited is None: visited = set() for child_name, child_module in module.named_children(): child_prefix = f"{prefix}.{child_name}" if prefix else child_name self._sync_fsdp_params_to_vllm( child_module, prefix=child_prefix, visited=visited ) # recurse into the child if isinstance(module, FSDP): with FSDP.summon_full_params(module, recurse=False, writeback=False): for param_name, param in module.named_parameters(): full_name = f"{prefix}.{param_name}" if prefix else param_name for extra in ("_fsdp_wrapped_module.", "_checkpoint_wrapped_module."): full_name = full_name.replace(extra, "") if full_name in visited: continue # skip FSDP subtrees already traversed visited.add(full_name) if self.vllm_mode == "server" and self.accelerator.is_main_process: self.vllm_client.update_named_param(full_name, param.data) elif self.vllm_mode == "colocate": llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model llm_model.load_weights([(full_name, param.data)]) @profiling_decorator def _move_model_to_vllm(self): # For DeepSpeed ZeRO-3 and FSDP, we need to gather all parameters before operations deepspeed_plugin = self.accelerator.state.deepspeed_plugin zero_stage_3 = deepspeed_plugin is not None and deepspeed_plugin.zero_stage == 3 if zero_stage_3: import deepspeed gather_if_zero3 = deepspeed.zero.GatheredParameters else: gather_if_zero3 = nullcontext if is_peft_model(self.model): # With PEFT and FSDP/DeepSpeed ZeRO Stage 3, we must gather the full model at once before merging, as # merging adapters in a sharded manner is not supported. # TODO: does this work with FSDP? with gather_if_zero3(list(self.model.parameters())): self.model.merge_adapter() # Update vLLM weights while parameters are gathered if self.is_fsdp_enabled: # note if using FSDP, gather_if_zero3 is nullcontext # Update vLLM weights while parameters are gathered # For PEFT with FSDP we need to use the memory efficient post-order traversal self._sync_fsdp_params_to_vllm(self.model) else: # DeepSpeed ZeRO-3 with PEFT for name, param in self.model.named_parameters(): # When using PEFT, we need to recover the original parameter name and discard some parameters name = name.removeprefix("base_model.model.").replace(".base_layer", "") if self.model.prefix in name: continue # When module to save, remove its prefix and discard the original module if "original_module" in name: continue name = name.replace("modules_to_save.default.", "") if self.vllm_mode == "server" and self.accelerator.is_main_process: self.vllm_client.update_named_param(name, param.data) elif self.vllm_mode == "colocate": llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model llm_model.load_weights([(name, param.data)]) # Unmerge adapters while parameters are still gathered self.model.unmerge_adapter() # Parameters will automatically be repartitioned when exiting the context else: # For non-PEFT models, simply gather (if needed) and update each parameter individually. if self.is_fsdp_enabled: self._sync_fsdp_params_to_vllm(self.model) # use memory-efficient post-order traversal for FSDP else: for name, param in self.model.named_parameters(): with gather_if_zero3([param]): if self.vllm_mode == "server" and self.accelerator.is_main_process: self.vllm_client.update_named_param(name, param.data) elif self.vllm_mode == "colocate": llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model llm_model.load_weights([(name, param.data)]) # Reset cache on vLLM if self.vllm_mode == "server" and self.accelerator.is_main_process: self.vllm_client.reset_prefix_cache() elif self.vllm_mode == "colocate": self.llm.reset_prefix_cache() @profiling_decorator def _prepare_inputs( self, generation_batch: dict[str, Union[torch.Tensor, Any]] ) -> dict[str, Union[torch.Tensor, Any]]: # Prepares inputs for model training/evaluation by managing completion generation and batch handling. # During training: # - Receives the local generation batch (Per-GPU batch size × steps per generation) # from the modified training dataloader instead of the standard local batch # - Generates completions once for the entire generation batch and splits it into batches of size # `per_device_train_batch_size` # - Buffers these completions and returns the appropriate slice for the current accumulation step # - Optimizes by regenerating completions only periodically (every steps_per_generation * num_iterations) # During evaluation: # - The input is treated as a standard local batch (no accumulation, no multiple iterations) # - Completions are generated for each batch without buffering or reuse # Returns a single local batch in both cases. mode = "train" if self.model.training else "eval" if mode == "train": generate_every = self.args.steps_per_generation * self.num_iterations if self._step % generate_every == 0 or self._buffered_inputs is None: # self._buffered_inputs=None can occur when resuming from a checkpoint generation_batch = self._generate_and_score_completions(generation_batch) generation_batch = shuffle_tensor_dict(generation_batch) self._buffered_inputs = split_tensor_dict(generation_batch, self.args.steps_per_generation) inputs = self._buffered_inputs[self._step % self.args.steps_per_generation] self._step += 1 else: # In evaluation, there is neither batch grouping for generation, nor multiple iterations, hence # local generation batch == local eval batch inputs = self._generate_and_score_completions(generation_batch) return inputs def _generate_and_score_completions( self, inputs: list[dict[str, Union[torch.Tensor, Any]]] ) -> dict[str, Union[torch.Tensor, Any]]: device = self.accelerator.device mode = "train" if self.model.training else "eval" prompts = [x["prompt"] for x in inputs] prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs] prompt_inputs = self.processing_class( text=prompts_text, return_tensors="pt", padding=True, padding_side="left", add_special_tokens=False ) prompt_inputs = super()._prepare_inputs(prompt_inputs) prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"] if self.max_prompt_length is not None: prompt_ids = prompt_ids[:, -self.max_prompt_length :] prompt_mask = prompt_mask[:, -self.max_prompt_length :] # Generate completions using either vLLM or regular generation if self.use_vllm: # First, update the vLLM weights if needed if self.state.global_step != self._last_loaded_step: self._move_model_to_vllm() self._last_loaded_step = self.state.global_step # Generate completions using vLLM: gather all prompts and use them in a single call in the main process if self.vllm_mode == "server": all_prompts_text = gather_object(prompts_text) if self.accelerator.is_main_process: # Since 'prompts' contains 'num_generations' duplicates, we first take unique prompts, and generate # num_generations outputs for each one. This is faster than generating outputs for each duplicate # prompt individually. ordered_set_of_prompts = all_prompts_text[:: self.num_generations] with profiling_context(self, "vLLM.generate"): completion_ids = self.vllm_client.generate( prompts=ordered_set_of_prompts, n=self.num_generations, repetition_penalty=self.repetition_penalty, temperature=self.temperature, top_p=self.top_p, top_k=-1 if self.top_k is None else self.top_k, min_p=0.0 if self.min_p is None else self.min_p, max_tokens=self.max_completion_length, guided_decoding_regex=self.guided_decoding_regex, ) else: completion_ids = [None] * len(all_prompts_text) # Broadcast the completions from the main process to all processes, ensuring each process receives its # corresponding slice. completion_ids = broadcast_object_list(completion_ids, from_process=0) process_slice = slice( self.accelerator.process_index * len(prompts), (self.accelerator.process_index + 1) * len(prompts), ) completion_ids = completion_ids[process_slice] # Generate completions using colocated vLLM instances: each device holds vLLM copy and work on their own batch of prompts elif self.vllm_mode == "colocate": if self.guided_decoding_regex: guided_decoding = GuidedDecodingParams(backend="outlines", regex=self.guided_decoding_regex) else: guided_decoding = None sampling_params = SamplingParams( n=1, # vLLM on each GPU generates only 1 in colocate mode repetition_penalty=self.repetition_penalty, temperature=self.temperature, top_p=self.top_p, top_k=-1 if self.top_k is None else self.top_k, min_p=0.0 if self.min_p is None else self.min_p, max_tokens=self.max_completion_length, guided_decoding=guided_decoding, ) if self.vllm_tensor_parallel_size > 1: # Gather prompts from all ranks in the TP group and flatten. # Each rank starts with its own prompts; after gathering, all ranks see the full group set. orig_size = len(prompts_text) gathered_prompts = [None for _ in range(self.vllm_tensor_parallel_size)] torch.distributed.all_gather_object(gathered_prompts, prompts_text, group=self.tp_group) all_prompts_text = [p for sublist in gathered_prompts for p in sublist] else: all_prompts_text = prompts_text with profiling_context(self, "vLLM.generate"): all_outputs = self.llm.generate(all_prompts_text, sampling_params=sampling_params, use_tqdm=False) completion_ids = [output.token_ids for outputs in all_outputs for output in outputs.outputs] if self.vllm_tensor_parallel_size > 1: # Slice completions for this rank within its TP group. # Each rank generates all outputs — we keep only our share. local_rank_in_group = torch.distributed.get_rank(group=self.tp_group) tp_slice = slice(local_rank_in_group * orig_size, (local_rank_in_group + 1) * orig_size) completion_ids = completion_ids[tp_slice] # Pad the completions, and concatenate them with the prompts completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids] completion_ids = pad(completion_ids, padding_value=self.processing_class.pad_token_id) prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1) else: # Regular generation path with unwrap_model_for_generation( self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation ) as unwrapped_model: with ( FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext() ): prompt_completion_ids = unwrapped_model.generate( prompt_ids, attention_mask=prompt_mask, generation_config=self.generation_config ) # Compute prompt length and extract completion ids prompt_length = prompt_ids.size(1) prompt_ids = prompt_completion_ids[:, :prompt_length] completion_ids = prompt_completion_ids[:, prompt_length:] # Mask everything after the first EOS token is_eos = completion_ids == self.processing_class.eos_token_id eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device) eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)] sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1) completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int() # Convert tensor to a list of lists of token IDs. This will be passed to the reward function, avoiding the need # to re-tokenize completions if the reward is computed from tokens. completion_ids_list = [ [id.item() for id, m in zip(row, mask_row) if m] for row, mask_row in zip(completion_ids, completion_mask) ] # Sum along sequence dimension (dim=1) to get completion length per sequence, used for logging completion_lengths = completion_mask.sum(1) # If mask_truncated_completions is enabled, zero out truncated completions in completion_mask if self.mask_truncated_completions: truncated_completions = ~is_eos.any(dim=1) completion_mask = completion_mask * (~truncated_completions).unsqueeze(1).int() # Concatenate prompt_mask with completion_mask for logit computation attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) # (B, P+C) logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens batch_size = self.args.per_device_train_batch_size if mode == "train" else self.args.per_device_eval_batch_size with torch.no_grad(): # When using num_iterations == 1 and steps_per_generation <= gradient_accumulation_steps # old_per_token_logps == per_token_logps, so we can skip it's computation here, and use # per_token_logps.detach() instead. if self.num_iterations > 1 or self.args.steps_per_generation > self.args.gradient_accumulation_steps: old_per_token_logps = self._get_per_token_logps( self.model, prompt_completion_ids, attention_mask, logits_to_keep, batch_size ) else: old_per_token_logps = None # Decode the generated completions completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True) if is_conversational(inputs[0]): completions = [] for prompt, completion in zip(prompts, completions_text): bootstrap = prompt.pop()["content"] if prompt[-1]["role"] == "assistant" else "" completions.append([{"role": "assistant", "content": bootstrap + completion}]) else: completions = completions_text rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device) # Repeat all input columns (but "prompt", "completion", and "completion_ids") to match the num of generations keys = [key for key in inputs[0] if key not in ["prompt", "completion", "completion_ids"]] reward_kwargs = {key: [example[key] for example in inputs] for key in keys} for i, (reward_func, reward_processing_class, reward_func_name) in enumerate( zip(self.reward_funcs, self.reward_processing_classes, self.reward_func_names) ): with profiling_context(self, reward_func_name): if isinstance(reward_func, nn.Module): # Module (no PretrainedModel) for compat with compiled models if is_conversational(inputs[0]): messages = [{"messages": p + c} for p, c in zip(prompts, completions)] texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages] else: texts = [p + c for p, c in zip(prompts, completions)] reward_inputs = reward_processing_class( text=texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False ) reward_inputs = super()._prepare_inputs(reward_inputs) with torch.inference_mode(): rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0] # Shape (B*G,) else: output_reward_func = reward_func( prompts=prompts, completions=completions, completion_ids=completion_ids_list, **reward_kwargs ) # Convert None values to NaN output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func] rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device) # If all reward functions return None for a given row, issue a detailed warning if torch.isnan(rewards_per_func).all(dim=1).any(): nan_row_idx = torch.isnan(rewards_per_func).all(dim=1).nonzero(as_tuple=True)[0][0] row_reward_kwargs = {key: value[nan_row_idx] for key, value in reward_kwargs.items()} row_reward_kwargs["prompt"] = prompts[nan_row_idx] row_reward_kwargs["completion"] = completions[nan_row_idx] warnings.warn( f"All reward functions returned None for the following kwargs: {row_reward_kwargs}. " "Please ensure that at least one reward function returns a valid reward." ) # Gather the reward per function: this part is crucial, because the rewards are normalized per group and the # completions may be distributed across processes rewards_per_func = gather(rewards_per_func) # Apply weights to each reward function's output and sum rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1) # Compute grouped-wise rewards mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1) std_grouped_rewards = rewards.view(-1, self.num_generations).std(dim=1) is_std_zero = torch.isclose(std_grouped_rewards, torch.zeros_like(std_grouped_rewards)) # Normalize the rewards to compute the advantages mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0) std_grouped_rewards = std_grouped_rewards.repeat_interleave(self.num_generations, dim=0) advantages = rewards - mean_grouped_rewards if self.scale_rewards: advantages = advantages / (std_grouped_rewards + 1e-4) # Slice to keep only the local part of the data process_slice = slice( self.accelerator.process_index * len(prompts), (self.accelerator.process_index + 1) * len(prompts), ) all_process_advantages = advantages.clone() # keep the aggregated advantages for logging advantages = advantages[process_slice] # Log the metrics if mode == "train": self.state.num_input_tokens_seen += self.accelerator.gather(attention_mask.sum()).sum().item() self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen] # Log completion lengths, mean, min, max agg_completion_lengths = self.accelerator.gather(completion_lengths) self._metrics[mode]["completions/mean_length"].append(agg_completion_lengths.float().mean().item()) self._metrics[mode]["completions/min_length"].append(agg_completion_lengths.float().min().item()) self._metrics[mode]["completions/max_length"].append(agg_completion_lengths.float().max().item()) # Identify sequences that terminated with EOS and log their lengths agg_terminated_with_eos = self.accelerator.gather(is_eos.any(dim=1)) term_completion_lengths = agg_completion_lengths[agg_terminated_with_eos] clipped_completions_ratio = 1 - len(term_completion_lengths) / len(agg_completion_lengths) self._metrics[mode]["completions/clipped_ratio"].append(clipped_completions_ratio) if len(term_completion_lengths) == 0: # edge case where no terminated sequences are found term_completion_lengths = torch.zeros(1, device=device) self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item()) self._metrics[mode]["completions/min_terminated_length"].append(term_completion_lengths.float().min().item()) self._metrics[mode]["completions/max_terminated_length"].append(term_completion_lengths.float().max().item()) # Calculate mean reward per function, but only for samples where the function was applied (non-NaN values) for i, reward_func_name in enumerate(self.reward_func_names): mean_rewards = torch.nanmean(rewards_per_func[:, i]).item() self._metrics[mode][f"rewards/{reward_func_name}/mean"].append(mean_rewards) std_rewards = nanstd(rewards_per_func[:, i]).item() self._metrics[mode][f"rewards/{reward_func_name}/std"].append(std_rewards) self._metrics[mode]["reward"].append(mean_grouped_rewards.mean().item()) self._metrics[mode]["reward_std"].append(std_grouped_rewards.mean().item()) self._metrics[mode]["frac_reward_zero_std"].append(is_std_zero.float().mean().item()) # Log prompt and completion texts self._textual_logs["prompt"].extend(gather_object(prompts_text)) self._textual_logs["completion"].extend(gather_object(completions_text)) for i, name in enumerate(self.reward_func_names): self._textual_logs["rewards"][name].extend(rewards_per_func[:, i].tolist()) self._textual_logs["advantages"].extend(all_process_advantages.tolist()) return { "prompt_ids": prompt_ids, "prompt_mask": prompt_mask, "completion_ids": completion_ids, "completion_mask": completion_mask, "advantages": advantages, "old_per_token_logps": old_per_token_logps, } def compute_liger_loss(self, unwrapped_model, inputs): # Compute the per-token log probabilities for the model prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"] completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"] input_ids = torch.cat([prompt_ids, completion_ids], dim=1) attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens # Compute the KL divergence between the model and the reference model ref_per_token_logps = None if self.beta != 0.0: with torch.no_grad(): if self.ref_model is not None: ref_per_token_logps = self._get_per_token_logps( self.ref_model, input_ids, attention_mask, logits_to_keep ) else: with self.accelerator.unwrap_model(self.model).disable_adapter(): ref_per_token_logps = self._get_per_token_logps( self.model, input_ids, attention_mask, logits_to_keep ) # get the last hidden state of the model last_hidden_state = self._get_last_hidden_state(unwrapped_model, input_ids, attention_mask, logits_to_keep) # compute loss and metrics using liger grpo loss loss, metrics = self.liger_grpo_loss( _input=last_hidden_state, lin_weight=unwrapped_model.lm_head.weight, selected_token_ids=completion_ids, attention_mask=completion_mask, advantages=inputs["advantages"], bias=unwrapped_model.lm_head.bias, old_per_token_logps=inputs["old_per_token_logps"], ref_per_token_logps=ref_per_token_logps, ) # Extract metrics from the liger_grpo_loss output # KL divergence is the first metric when beta is non-zero mean_kl = metrics[0] if self.beta != 0.0 else None clip_ratio = metrics[-1] mode = "train" if self.model.training else "eval" if self.beta != 0.0: self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).mean().item()) self._metrics[mode]["clip_ratio"].append(self.accelerator.gather(clip_ratio).mean().item()) return loss @profiling_decorator def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None): if return_outputs: raise ValueError("The GRPOTrainer does not support returning outputs") if self.use_liger_loss: # Compute the loss using the liger grpo loss unwrapped_model = self.accelerator.unwrap_model(model) return self._forward_redirection(model, unwrapped_model, self.compute_liger_loss, unwrapped_model, inputs) else: return self._compute_loss(model, inputs) def _compute_loss(self, model, inputs): # Compute the per-token log probabilities for the model prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"] completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"] input_ids = torch.cat([prompt_ids, completion_ids], dim=1) attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep) # Compute the KL divergence between the model and the reference model if self.beta != 0.0: with torch.no_grad(): if self.ref_model is not None: ref_per_token_logps = self._get_per_token_logps( self.ref_model, input_ids, attention_mask, logits_to_keep ) else: with self.accelerator.unwrap_model(self.model).disable_adapter(): ref_per_token_logps = self._get_per_token_logps( self.model, input_ids, attention_mask, logits_to_keep ) per_token_kl = ( torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1 ) # Compute the loss advantages = inputs["advantages"] # When using num_iterations == 1 and steps_per_generation <= gradient_accumulation_steps # old_per_token_logps == per_token_logps, so we can skip it's computation # (see _generate_and_score_completions) and use per_token_logps.detach() instead. old_per_token_logps = ( per_token_logps.detach() if inputs["old_per_token_logps"] is None else inputs["old_per_token_logps"] ) coef_1 = torch.exp(per_token_logps - old_per_token_logps) coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high) # Two-sided clipping if self.args.delta is not None: coef_1 = torch.clamp(coef_1, max=self.args.delta) per_token_loss1 = coef_1 * advantages.unsqueeze(1) per_token_loss2 = coef_2 * advantages.unsqueeze(1) per_token_loss = -torch.min(per_token_loss1, per_token_loss2) if self.beta != 0.0: per_token_loss = per_token_loss + self.beta * per_token_kl if self.loss_type == "grpo": loss = ((per_token_loss * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)).mean() elif self.loss_type == "bnpo": loss = (per_token_loss * completion_mask).sum() / completion_mask.sum().clamp(min=1.0) elif self.loss_type == "dr_grpo": loss = (per_token_loss * completion_mask).sum() / (per_token_loss.size(0) * self.max_completion_length) else: raise ValueError(f"Unknown loss type: {self.loss_type}") # Log the metrics mode = "train" if self.model.training else "eval" if self.beta != 0.0: mean_kl = (per_token_kl * completion_mask).sum() / completion_mask.sum() self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).nanmean().item()) # Compute the clipped probability ratios is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0) is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0) is_region_clipped = is_low_clipped | is_high_clipped low_clip = (is_low_clipped * completion_mask).sum() / completion_mask.sum() high_clip = (is_high_clipped * completion_mask).sum() / completion_mask.sum() clip_ratio = (is_region_clipped * completion_mask).sum() / completion_mask.sum() gathered_low_clip = self.accelerator.gather(low_clip) self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item()) self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item()) gathered_high_clip = self.accelerator.gather(high_clip) self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item()) self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item()) gathered_clip_ratio = self.accelerator.gather(clip_ratio) self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item()) return loss def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys: Optional[list[str]] = None): inputs = self._prepare_inputs(inputs) with torch.no_grad(): with self.compute_loss_context_manager(): loss = self.compute_loss(model, inputs) loss = loss.mean().detach() return loss, None, None def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: mode = "train" if self.model.training else "eval" metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()} # average the metrics # This method can be called both in training and evaluation. When called in evaluation, the keys in `logs` # start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format. if mode == "eval": metrics = {f"eval_{key}": val for key, val in metrics.items()} logs = {**logs, **metrics} super().log(logs, start_time) self._metrics[mode].clear() if self.accelerator.is_main_process and self.log_completions: if is_rich_available(): print_prompt_completions_sample( self._textual_logs["prompt"], self._textual_logs["completion"], self._textual_logs["rewards"], self._textual_logs["advantages"], self.state.global_step, self.num_completions_to_print, ) if self.args.report_to and "wandb" in self.args.report_to and wandb.run is not None: import pandas as pd table = { "step": [str(self.state.global_step)] * len(self._textual_logs["prompt"]), "prompt": self._textual_logs["prompt"], "completion": self._textual_logs["completion"], **self._textual_logs["rewards"], "advantage": self._textual_logs["advantages"], } df = pd.DataFrame(table) if self.wandb_log_unique_prompts: df = df.drop_duplicates(subset=["prompt"]) wandb.log({"completions": wandb.Table(dataframe=df)}) # Ensure the model card is saved along with the checkpoint def _save_checkpoint(self, model, trial): if self.args.hub_model_id is None: model_name = Path(self.args.output_dir).name else: model_name = self.args.hub_model_id.split("/")[-1] self.create_model_card(model_name=model_name) super()._save_checkpoint(model, trial) def create_model_card( self, model_name: Optional[str] = None, dataset_name: Optional[str] = None, tags: Union[str, list[str], None] = None, ): """ Creates a draft of a model card using the information available to the `Trainer`. Args: model_name (`str` or `None`, *optional*, defaults to `None`): Name of the model. dataset_name (`str` or `None`, *optional*, defaults to `None`): Name of the dataset used for training. tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): Tags to be associated with the model card. """ if not self.is_world_process_zero(): return if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): base_model = self.model.config._name_or_path else: base_model = None tags = tags or set() if isinstance(tags, str): tags = {tags} if hasattr(self.model.config, "unsloth_version"): tags.add("unsloth") tags.update(self._tag_names) citation = textwrap.dedent( """\ @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } """ ) model_card = generate_model_card( base_model=base_model, model_name=model_name, hub_model_id=self.hub_model_id, dataset_name=dataset_name, tags=tags, wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, comet_url=get_comet_experiment_url(), trainer_name="GRPO", trainer_citation=citation, paper_title="DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models", paper_id="2402.03300", ) model_card.save(os.path.join(self.args.output_dir, "README.md"))