File size: 7,660 Bytes
f59869c ead6402 f59869c e41941c f59869c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import json
import math
import os
import random
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi
st.set_page_config(page_title="Knesset Plenums Dataset Preview", layout="wide")
fallback_dataset_repo_owner = os.environ.get("REPO_OWNER", "ivrit-ai")
dataset_repo_owner = os.environ.get("SPACE_AUTHOR_NAME", fallback_dataset_repo_owner)
dataset_repo_name = os.environ.get("DATASET_REPO_NAME", "knesset-plenums")
repo_id = f"{dataset_repo_owner}/{dataset_repo_name}"
hf_api = HfApi(token=st.secrets["HF_TOKEN"])
manifest_file = hf_api.hf_hub_download(repo_id, "manifest.csv", repo_type="dataset")
manifest_df = pd.read_csv(manifest_file)
# Filter samples with duration less than 7200 seconds (2 hours)
filtered_samples = manifest_df[manifest_df["duration"] < 7200].copy()
# Convert duration from seconds to hours for display
filtered_samples["duration_hours"] = filtered_samples["duration"] / 3600
# Create display options for the dropdown
sample_options = {}
for _, row in filtered_samples.iterrows():
plenum_id = str(row["plenum_id"])
plenum_date = row["plenum_date"]
hours = round(row["duration_hours"], 1)
display_text = f"{plenum_date} - ({hours} hours)"
sample_options[display_text] = plenum_id
# Default to sample_id 81733 if available, otherwise use the first sample
default_sample_id = "81733"
default_option = next(
(k for k, v in sample_options.items() if v == default_sample_id),
next(iter(sample_options.keys())) if sample_options else None,
)
# Create the dropdown for sample selection
selected_option = st.sidebar.selectbox(
"Select a plenum sample:",
options=list(sample_options.keys()),
index=list(sample_options.keys()).index(default_option) if default_option else 0,
)
# Get the selected plenum ID
sample_plenum_id = sample_options[selected_option]
sample_audio_file_repo_path = f"{sample_plenum_id}/audio.m4a"
sample_metadata_file_repo_path = f"{sample_plenum_id}/metadata.json"
sample_aligned_file_repo_path = f"{sample_plenum_id}/transcript.aligned.json"
sample_raw_text_repo_path = f"{sample_plenum_id}/raw.transcript.txt"
# Display the title with the selected Plenum ID
st.title(f"Knesset Plenum ID: {sample_plenum_id}")
st.markdown(
"Please refer to the main dataset card for more details. [ivrit.ai/knesset-plenums](https://huggingface.co/datasets/ivrit-ai/knesset-plenums)"
"\n\nThis preview shows a small subset (the smallest samples) of the dataset."
)
# Cache the sample data loading to only reload when the sample changes
@st.cache_data
def load_sample_data(repo_id, plenum_id):
"""Load sample data files for a given plenum ID"""
audio_path = f"{plenum_id}/audio.m4a"
metadata_path = f"{plenum_id}/metadata.json"
transcript_path = f"{plenum_id}/transcript.aligned.json"
audio_file = hf_api.hf_hub_download(repo_id, audio_path, repo_type="dataset")
metadata_file = hf_api.hf_hub_download(repo_id, metadata_path, repo_type="dataset")
transcript_file = hf_api.hf_hub_download(
repo_id, transcript_path, repo_type="dataset"
)
raw_transcript_text_file = hf_api.hf_hub_download(
repo_id, sample_raw_text_repo_path, repo_type="dataset"
)
return audio_file, metadata_file, transcript_file, raw_transcript_text_file
# Load the sample data for the selected plenum
(
sample_audio_file,
sample_metadata_file,
sample_transcript_aligned_file,
sample_raw_transcript_text_file,
) = load_sample_data(repo_id, sample_plenum_id)
# Parses the metadata file of this sample - to get the list of all segments.
with open(sample_metadata_file, "r") as f:
sample_metadata = json.load(f)
# each segment is a dict with the structure:
# {
# "start": 3527.26,
# "end": 3531.53,
# "probability": 0.9309
# },
segments_quality_scores = sample_metadata["per_segment_quality_scores"]
segments_quality_scores_df = pd.DataFrame(segments_quality_scores)
segments_quality_scores_df["segment_id"] = segments_quality_scores_df.index
with open(sample_transcript_aligned_file, "r") as f:
sample_transcript_aligned = json.load(f)
transcript_segments = sample_transcript_aligned["segments"]
with open(sample_raw_transcript_text_file, "r") as f:
sample_raw_text = f.read()
col_main, col_aux = st.columns([2, 3])
event = col_main.dataframe(
segments_quality_scores_df,
on_select="rerun",
hide_index=True,
selection_mode=["single-row"],
column_config={
"probability": st.column_config.ProgressColumn(
label="Quality Score",
width="medium",
format="percent",
min_value=0,
max_value=1,
)
},
)
# Initialize session state for selection if it doesn't exist
if "default_selection" not in st.session_state:
st.session_state.default_selection = random.randint(
0, min(49, len(segments_quality_scores_df) - 1)
)
# If a selection exists, get the start and end times of the selected segment
if event and event.selection and event.selection["rows"]:
row_idx = event.selection["rows"][0]
else:
# Use the default random selection if no row is selected
row_idx = st.session_state.default_selection
df_row = segments_quality_scores_df.iloc[row_idx]
segment_id = int(df_row["segment_id"])
selected_segment = segments_quality_scores[segment_id]
start_time = selected_segment["start"]
end_time = selected_segment["end"]
with col_main:
st.write(f"Selected segment: {selected_segment}")
start_at = selected_segment["start"]
end_at = selected_segment["end"]
st.audio(
sample_audio_file,
start_time=math.floor(start_at),
end_time=math.ceil(end_at),
autoplay=True,
)
transcript_segment = transcript_segments[segment_id]
st.caption(f'<div dir="rtl">{transcript_segment["text"]}</div>', unsafe_allow_html=True)
st.divider()
st.caption(
f"Note: The audio will start at {math.floor(start_at)} seconds and end at {math.ceil(end_at)} seconds (rounded up/down) since this is the resolution of the player, actual segments are more accurate."
)
with col_aux:
# Create a chart of Quality vs start_time
st.subheader("Segment Quality Over Time")
# Prepare data for the chart
chart_data = segments_quality_scores_df.copy()
chart_data = chart_data.sort_values(by="start")
# Add a scatter plot to highlight the selected segment
import altair as alt
import pandas as pd
# Create a base chart with all points
base_chart = alt.Chart(chart_data).mark_circle(size=20).encode(
x=alt.X('start:Q', title='Start Time (seconds)'),
y=alt.Y('probability:Q', title='Quality Score', scale=alt.Scale(domain=[0, 1])),
tooltip=['start', 'end', 'probability']
)
# Create a highlight for the selected segment
selected_point = pd.DataFrame([{
'start': selected_segment['start'],
'probability': selected_segment['probability']
}])
highlight = alt.Chart(selected_point).mark_circle(size=120, color='red').encode(
x='start:Q',
y='probability:Q'
)
# Combine the charts
combined_chart = base_chart + highlight
# Display the chart
st.altair_chart(combined_chart, use_container_width=True)
with st.expander("Raw Transcript Text", expanded=False):
st.text_area(
"Raw Transcript Text",
value=sample_raw_text,
height=300,
label_visibility="collapsed",
disabled=True,
)
with st.expander("Sample Metadata", expanded=False):
st.json(
sample_metadata
)
|