iyadalagha's picture
handle both ar and eng
c14e307
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, validator
import re
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from collections import Counter
import logging
import numpy as np
# Configure logging with more detail
logging.basicConfig(filename="predictions.log", level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
app = FastAPI(title="Improved AI Text Detector")
# Enable GPU if available, else use CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(42)
# Load classifier models
english_detectors = [
pipeline("text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta", device=device if device.type == "cuda" else -1, truncation=True, max_length=512),
pipeline("text-classification", model="openai-community/roberta-large-openai-detector", device=device if device.type == "cuda" else -1, truncation=True, max_length=512)
]
arabic_detector = pipeline("text-classification", model="sabaridsnfuji/arabic-ai-text-detector", device=device if device.type == "cuda" else -1, truncation=True, max_length=512)
# Load perplexity models
ppl_english = {
"tokenizer": AutoTokenizer.from_pretrained("gpt2"),
"model": AutoModelForCausalLM.from_pretrained("gpt2").to(device)
}
ppl_arabic = {
"tokenizer": AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base"),
"model": AutoModelForCausalLM.from_pretrained("aubmindlab/aragpt2-base").to(device)
}
def detect_language(text: str) -> str:
"""Detect if text is Arabic or English based on Unicode character ranges."""
arabic_chars = len(re.findall(r'[\u0600-\u06FF]', text))
latin_chars = len(re.findall(r'[A-Za-z]', text))
total_chars = arabic_chars + latin_chars
if total_chars == 0:
return 'en'
arabic_ratio = arabic_chars / total_chars
return 'ar' if arabic_ratio > 0.5 else 'en'
def calculate_burstiness(text: str) -> float:
"""Calculate burstiness (std/mean of sentence lengths) to bias toward human text."""
sentences = re.split(r'[.!?]', text)
lengths = [len(s.split()) for s in sentences if s]
return np.std(lengths) / (np.mean(lengths) + 1e-6) if lengths else 0
def calculate_ttr(text: str) -> float:
"""Calculate type-token ratio (lexical diversity) to bias toward human text."""
words = text.split()
if not words:
return 0
unique_words = len(set(words))
total_words = len(words)
return unique_words / total_words
def clean_text(text: str, language: str) -> str:
"""Clean text by removing special characters and normalizing spaces. Skip lowercase for Arabic."""
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[^\w\s.,!?]', '', text)
text = text.strip()
if language == 'en':
text = text.lower()
return text
def get_classifier_score(text: str, detector) -> float:
"""Get classifier probability for AI label."""
result = detector(text, truncation=True, max_length=512)[0]
score = result['score']
return score if result['label'] in ['AI', 'Fake'] else 1 - score
def get_perplexity(text: str, tokenizer, model) -> float:
"""Calculate perplexity using a language model."""
encodings = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
max_length = model.config.n_positions
stride = 512
seq_len = encodings.input_ids.size(1)
nlls = []
prev_end_loc = 0
for begin_loc in range(0, seq_len, stride):
end_loc = min(begin_loc + stride, seq_len)
trg_len = end_loc - prev_end_loc
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device)
target_ids = input_ids.clone()
target_ids[:, :-trg_len] = -100
with torch.no_grad():
outputs = model(input_ids, labels=target_ids)
neg_log_likelihood = outputs.loss * trg_len
nlls.append(neg_log_likelihood)
prev_end_loc = end_loc
if end_loc == seq_len:
break
ppl = torch.exp(torch.stack(nlls).sum() / end_loc if nlls else torch.tensor(0)).item()
return ppl
def calculate_weighted_score(clf_score: float, ppl: float, burstiness: float, ttr: float, detected_lang: str) -> float:
"""Calculate a weighted score combining classifier and features."""
ppl_norm = min(ppl / 200, 1.0) # Normalize perplexity (cap at 200)
burstiness_norm = min(burstiness / (2.0 if detected_lang == 'en' else 1.5), 1.0) # Normalize burstiness
ttr_norm = max(0.1 / max(ttr, 0.01), 1.0) # Normalize TTR (inverse, cap at 0.1)
feature_score = (ppl_norm + burstiness_norm + ttr_norm) / 3 # Average feature score
return 0.6 * clf_score + 0.4 * feature_score # Weight classifier higher
def split_text(text: str, max_chars: int = 5000) -> list:
"""Split text into chunks of max_chars, preserving sentence boundaries."""
sentences = re.split(r'(?<=[.!?])\s+', text)
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) <= max_chars:
current_chunk += sentence + " "
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence + " "
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
class TextInput(BaseModel):
text: str
@validator("text")
def validate_text(cls, value):
"""Validate input text for minimum length and content."""
word_count = len(value.split())
if word_count < 50:
raise ValueError(f"Text too short ({word_count} words). Minimum 50 words required.")
if not re.search(r'[\w]', value):
raise ValueError("Text must contain alphabetic characters.")
return value
@app.post("/detect")
def detect(input_text: TextInput):
detected_lang = detect_language(input_text.text)
note_lang = f"Detected language: {'Arabic' if detected_lang == 'ar' else 'English'}"
cleaned_text = clean_text(input_text.text, detected_lang)
burstiness = calculate_burstiness(cleaned_text)
ttr = calculate_ttr(cleaned_text)
ppl_model = ppl_english if detected_lang == 'en' else ppl_arabic
ppl = get_perplexity(cleaned_text, ppl_model["tokenizer"], ppl_model["model"])
note_features = f"Burstiness: {burstiness:.2f} (high suggests human), TTR: {ttr:.2f} (low suggests human), Perplexity: {ppl:.2f} (high suggests human)"
# Select appropriate models
detectors = english_detectors if detected_lang == 'en' else [arabic_detector]
is_ensemble = detected_lang == 'en'
# Thresholds for human classification
ppl_threshold = 150 # Increased from 100
burstiness_threshold = 1.7 if detected_lang == 'en' else 1.2 # Increased from 1.5/1.0
ttr_threshold = 0.08 # Decreased from 0.10
if len(cleaned_text) > 10000:
chunks = split_text(cleaned_text, max_chars=5000)
labels = []
clf_scores = []
ppls = []
for chunk_idx, chunk in enumerate(chunks):
chunk_labels = []
chunk_clf_scores = []
for det_idx, detector in enumerate(detectors):
clf_score = get_classifier_score(chunk, detector)
label = "AI" if clf_score >= 0.90 else "Human" if clf_score < 0.60 else "Uncertain" # Adjusted from 0.95
chunk_labels.append(label)
chunk_clf_scores.append(clf_score)
logging.debug(f"Chunk {chunk_idx}, Model {det_idx}: Label={label}, Classifier Score={clf_score:.4f}")
chunk_ppl = get_perplexity(chunk, ppl_model["tokenizer"], ppl_model["model"])
chunk_final_label = Counter(chunk_labels).most_common(1)[0][0]
avg_clf_score = np.mean(chunk_clf_scores)
# Count human-like features
human_features = sum([
chunk_ppl > ppl_threshold,
burstiness > burstiness_threshold,
ttr < ttr_threshold
])
feature_note = f"Human-like features: {human_features}/3 (PPL={chunk_ppl:.2f}, Burstiness={burstiness:.2f}, TTR={ttr:.2f})"
# Calculate weighted score
weighted_score = calculate_weighted_score(avg_clf_score, chunk_ppl, burstiness, ttr, detected_lang)
chunk_final_label = "AI" if weighted_score >= 0.7 else "Human" if weighted_score < 0.4 else "Uncertain"
# Require all 3 features to override to Human
if chunk_final_label == "Uncertain" or any(l == "Human" for l in chunk_labels):
if human_features == 3:
chunk_final_label = "Human"
elif chunk_final_label == "AI" and avg_clf_score < 0.90 and human_features == 3:
chunk_final_label = "Human"
labels.append(chunk_final_label)
clf_scores.append(avg_clf_score)
ppls.append(chunk_ppl)
logging.debug(f"Chunk {chunk_idx} Final: Label={chunk_final_label}, Avg Classifier Score={avg_clf_score:.4f}, Weighted Score={weighted_score:.4f}, Perplexity={chunk_ppl:.2f}, {feature_note}")
label_counts = Counter(labels)
final_label = label_counts.most_common(1)[0][0]
avg_weighted_score = sum(calculate_weighted_score(clf_scores[i], ppls[i], burstiness, ttr, detected_lang) for i in range(len(clf_scores))) / len(clf_scores) if clf_scores else 0.0
final_label = "AI" if avg_weighted_score >= 0.7 else "Human" if avg_weighted_score < 0.4 else "Uncertain"
if final_label == "Uncertain" or any(l == "Human" for l in labels):
human_features = sum([
any(ppl > ppl_threshold for ppl in ppls),
burstiness > burstiness_threshold,
ttr < ttr_threshold
])
if human_features == 3:
final_label = "Human"
avg_clf_score = sum(clf_scores) / len(clf_scores) if clf_scores else 0.0
avg_ppl = sum(ppls) / len(ppls) if ppls else 0.0
logging.info(f"Language: {detected_lang} | Text Length: {len(cleaned_text)} | Chunks: {len(chunks)} | Prediction: {final_label} | Avg Classifier Score: {avg_clf_score:.4f} | Avg Perplexity: {avg_ppl:.2f} | {note_features}")
return {
"prediction": final_label,
"classifier_score": round(avg_clf_score, 4),
"perplexity": round(avg_ppl, 2),
"note": f"{note_lang}. Text was split into {len(chunks)} chunks due to length > 10,000 characters. {note_features}. Weighted Score={avg_weighted_score:.4f}.",
"chunk_results": [
{"chunk": chunk[:50] + "...", "label": labels[i], "classifier_score": clf_scores[i], "perplexity": ppls[i], "burstiness": burstiness, "ttr": ttr}
for i, chunk in enumerate(chunks)
]
}
else:
if is_ensemble:
clf_scores = []
labels = []
for det_idx, detector in enumerate(detectors):
clf_score = get_classifier_score(cleaned_text, detector)
label = "AI" if clf_score >= 0.90 else "Human" if clf_score < 0.60 else "Uncertain" # Adjusted from 0.95
labels.append(label)
clf_scores.append(clf_score)
logging.debug(f"Model {det_idx}: Label={label}, Classifier Score={clf_score:.4f}")
label_counts = Counter(labels)
final_label = label_counts.most_common(1)[0][0]
avg_clf_score = sum(clf_scores) / len(clf_scores) if clf_scores else 0.0
# Count human-like features
human_features = sum([
ppl > ppl_threshold,
burstiness > burstiness_threshold,
ttr < ttr_threshold
])
feature_note = f"Human-like features: {human_features}/3 (PPL={ppl:.2f}, Burstiness={burstiness:.2f}, TTR={ttr:.2f})"
# Calculate weighted score
weighted_score = calculate_weighted_score(avg_clf_score, ppl, burstiness, ttr, detected_lang)
final_label = "AI" if weighted_score >= 0.7 else "Human" if weighted_score < 0.4 else "Uncertain"
# Require all 3 features to override to Human
if final_label == "Uncertain" or any(l == "Human" for l in labels):
if human_features == 3:
final_label = "Human"
elif final_label == "AI" and avg_clf_score < 0.90 and human_features == 3:
final_label = "Human"
note = f"{note_lang}. Ensemble used: {len(detectors)} models. {note_features}. {feature_note}. Weighted Score={weighted_score:.4f}."
if 0.60 <= avg_clf_score < 0.90:
note += " Warning: Close to threshold, result may be uncertain."
logging.info(f"Language: {detected_lang} | Text Length: {len(cleaned_text)} | Prediction: {final_label} | Avg Classifier Score: {avg_clf_score:.4f} | Perplexity: {ppl:.2f} | {note_features} | {feature_note}")
else:
clf_score = get_classifier_score(cleaned_text, arabic_detector)
final_label = "AI" if clf_score >= 0.90 else "Human" if clf_score < 0.60 else "Uncertain" # Adjusted from 0.95
# Count human-like features
human_features = sum([
ppl > ppl_threshold,
burstiness > burstiness_threshold,
ttr < ttr_threshold
])
feature_note = f"Human-like features: {human_features}/3 (PPL={ppl:.2f}, Burstiness={burstiness:.2f}, TTR={ttr:.2f})"
# Calculate weighted score
weighted_score = calculate_weighted_score(clf_score, ppl, burstiness, ttr, detected_lang)
final_label = "AI" if weighted_score >= 0.7 else "Human" if weighted_score < 0.4 else "Uncertain"
# Require all 3 features to override to Human
if final_label == "Uncertain" or final_label == "Human":
if human_features == 3:
final_label = "Human"
elif final_label == "AI" and clf_score < 0.90 and human_features == 3:
final_label = "Human"
note = f"{note_lang}. {note_features}. {feature_note}. Weighted Score={weighted_score:.4f}."
if 0.60 <= clf_score < 0.90:
note += " Warning: Close to threshold, result may be uncertain."
logging.info(f"Language: {detected_lang} | Text Length: {len(cleaned_text)} | Prediction: {final_label} | Classifier Score: {clf_score:.4f} | Perplexity: {ppl:.2f} | {note_features} | {feature_note}")
return {
"prediction": final_label,
"classifier_score": round(avg_clf_score, 4),
"perplexity": round(ppl, 2),
"note": note
}