Spaces:
Running
Running
Upload 2 files
Browse files- .gitattributes +1 -0
- 0.0008-0.92.keras +3 -0
- streamlit_app.py +79 -0
.gitattributes
CHANGED
|
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
best_model.keras filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
best_model.keras filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
0.0008-0.92.keras filter=lfs diff=lfs merge=lfs -text
|
0.0008-0.92.keras
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6e3e3765a66ab2d69de87338880087525386c6146138422fc0dcd27405ffcb00
|
| 3 |
+
size 2335883425
|
streamlit_app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import keras
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
st.set_page_config(layout="wide")
|
| 7 |
+
|
| 8 |
+
#title
|
| 9 |
+
st.title('Crossing Identifier')
|
| 10 |
+
|
| 11 |
+
#header
|
| 12 |
+
st.header('Choose whether you\'d like to enter a latitude/longitude coordinates, or upload a satellite image.')
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
state = st.session_state
|
| 17 |
+
|
| 18 |
+
if "dict_options" not in state:
|
| 19 |
+
state.dict_options = {}
|
| 20 |
+
|
| 21 |
+
if "submitted" not in state:
|
| 22 |
+
state.submitted = False
|
| 23 |
+
|
| 24 |
+
options = ["option1", "option2", "option3", "option4"]
|
| 25 |
+
|
| 26 |
+
col1, col2, col3 = st.columns(3)
|
| 27 |
+
|
| 28 |
+
with col1.form("my_form"):
|
| 29 |
+
new_country = st.text_input("New country")
|
| 30 |
+
submit_button = st.form_submit_button(
|
| 31 |
+
label="Add new country", on_click=lambda: state.update(submitted=True)
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
if state.submitted:
|
| 35 |
+
state.dict_options[new_country] = col2.multiselect(
|
| 36 |
+
f"Select the options you want for {new_country}",
|
| 37 |
+
options,
|
| 38 |
+
default=options[:2],
|
| 39 |
+
)
|
| 40 |
+
col2.write(state.dict_options)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
#divide app into two columns
|
| 45 |
+
col1, col2 = st.columns(2)
|
| 46 |
+
|
| 47 |
+
#load model and initialize image size required by model. uploaded images are resized to indicated size
|
| 48 |
+
loaded_model = keras.models.load_model("0.0008-0.92.keras")
|
| 49 |
+
img_height = 640
|
| 50 |
+
img_width = 640
|
| 51 |
+
|
| 52 |
+
#place to enter
|
| 53 |
+
|
| 54 |
+
#place to enter coordinates (or upload) and display image
|
| 55 |
+
with col1:
|
| 56 |
+
enter_coords = st.button("Enter Coordinates")
|
| 57 |
+
if enter_coords:
|
| 58 |
+
st.write(":smile:")
|
| 59 |
+
upload_img = st.button("Upload an Image")
|
| 60 |
+
if enter_coords:
|
| 61 |
+
st.write("ok")
|
| 62 |
+
|
| 63 |
+
st.header('Please upload a satellite image, or enter a latitude/longitude pair')
|
| 64 |
+
img_buffer = st.file_uploader("Upload a satellite image file (format: .png, .jpeg, or .jpg).",type=['png', 'jpeg', 'jpg'])
|
| 65 |
+
if img_buffer is not None:
|
| 66 |
+
st.image(img_buffer, use_column_width = True)
|
| 67 |
+
|
| 68 |
+
#place to display prediction result
|
| 69 |
+
with col2:
|
| 70 |
+
if img_buffer is not None:
|
| 71 |
+
st.header('Result')
|
| 72 |
+
img = Image.open(img_buffer).convert("RGB")
|
| 73 |
+
img_array = np.array(img)
|
| 74 |
+
batch_size = 1
|
| 75 |
+
img_array = np.reshape(img_array,[batch_size,img_height,img_width,3])
|
| 76 |
+
result = loaded_model.predict(img_array)
|
| 77 |
+
st.write("Your prediction is:")
|
| 78 |
+
st.write(f"{np.round(result[0][0]*100,decimals=2)}% chance of no crossing")
|
| 79 |
+
st.write(f"{np.round(result[0][1]*100,decimals=2)}% chance of at least one crossing")
|