File size: 44,629 Bytes
a459327
 
 
 
 
5524ef7
1ff1aab
 
a459327
bb9a8b1
7dfa01d
 
 
a459327
 
 
 
 
 
 
 
 
5524ef7
a459327
1ff1aab
5524ef7
1ff1aab
 
 
 
a459327
 
 
 
 
 
 
a3f7aaa
0750c9c
a459327
 
 
 
 
1ff1aab
 
a3f7aaa
1ff1aab
 
 
 
a3f7aaa
1ff1aab
 
 
a3f7aaa
1ff1aab
 
 
a3f7aaa
1ff1aab
0750c9c
7dfa01d
1ff1aab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb9a8b1
7dfa01d
1ff1aab
 
 
a459327
1ff1aab
547c4d0
 
1ff1aab
19c0923
1ff1aab
bea11aa
5524ef7
 
1ff1aab
 
5524ef7
1ff1aab
5524ef7
 
a1321b3
1ff1aab
 
5524ef7
1ff1aab
 
bb9a8b1
1ff1aab
 
bea11aa
 
 
 
 
 
 
 
 
 
 
 
1ff1aab
 
 
 
 
 
 
 
 
 
bb9a8b1
1ff1aab
bb9a8b1
1ff1aab
bb9a8b1
 
1ff1aab
 
 
 
 
 
 
 
 
 
 
 
 
bb9a8b1
a1321b3
 
 
1ff1aab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bea11aa
 
 
 
 
 
 
 
 
1ff1aab
 
 
 
a459327
1ff1aab
 
 
 
 
 
 
 
 
 
 
a3f7aaa
1ff1aab
 
 
 
 
19c0923
1ff1aab
a3f7aaa
1ff1aab
 
 
 
bea11aa
1ff1aab
a3f7aaa
1ff1aab
 
bea11aa
a3f7aaa
19c0923
a459327
1ff1aab
 
 
 
bea11aa
 
 
 
 
 
 
 
 
 
 
1ff1aab
 
 
a459327
1ff1aab
14555be
1ff1aab
14555be
 
 
 
19c0923
 
14555be
 
 
 
 
 
 
19c0923
 
 
 
 
 
 
 
 
 
 
 
14555be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19c0923
5524ef7
1ff1aab
14555be
 
 
1ff1aab
19c0923
 
14555be
 
 
 
 
 
 
19c0923
 
 
 
 
 
 
 
 
 
 
 
14555be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19c0923
14555be
1ff1aab
 
 
 
 
 
 
 
 
 
 
 
 
 
14555be
1ff1aab
 
14555be
1ff1aab
14555be
 
 
 
1ff1aab
 
 
 
 
 
 
14555be
 
1ff1aab
14555be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ff1aab
 
 
14555be
1ff1aab
 
 
 
5524ef7
14555be
 
1ff1aab
14555be
5524ef7
14555be
 
1ff1aab
 
14555be
 
 
 
 
 
1ff1aab
5524ef7
14555be
 
1ff1aab
 
14555be
 
 
 
 
 
 
 
 
 
 
1ff1aab
14555be
 
1ff1aab
 
14555be
 
 
 
 
1ff1aab
14555be
1ff1aab
14555be
1ff1aab
14555be
 
1ff1aab
 
14555be
 
 
 
1ff1aab
14555be
 
1ff1aab
14555be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ff1aab
 
14555be
 
 
 
 
 
 
 
1ff1aab
14555be
 
 
 
 
1ff1aab
14555be
 
1ff1aab
14555be
 
1ff1aab
14555be
 
 
 
1ff1aab
14555be
 
1ff1aab
14555be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ff1aab
 
 
14555be
 
 
 
1ff1aab
 
5524ef7
1ff1aab
 
 
 
 
 
 
 
5524ef7
1ff1aab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5524ef7
1ff1aab
 
 
 
 
5524ef7
1ff1aab
 
 
5524ef7
 
1ff1aab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a459327
1ff1aab
 
 
 
 
 
5524ef7
1ff1aab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5524ef7
 
1ff1aab
 
 
5524ef7
a459327
1ff1aab
5524ef7
1ff1aab
 
5524ef7
1ff1aab
 
5524ef7
1ff1aab
5524ef7
1ff1aab
 
 
5524ef7
547c4d0
1ff1aab
 
 
 
 
 
 
5524ef7
1ff1aab
 
 
 
 
 
5524ef7
1ff1aab
 
 
 
 
5524ef7
1ff1aab
 
 
 
 
 
 
 
 
 
 
 
19c0923
 
 
1ff1aab
 
 
 
19c0923
1ff1aab
 
 
19c0923
 
 
 
 
 
 
 
 
 
5524ef7
1ff1aab
19c0923
 
1ff1aab
 
19c0923
 
bea11aa
 
19c0923
 
bea11aa
 
19c0923
 
 
1ff1aab
19c0923
 
1ff1aab
19c0923
 
1ff1aab
 
 
 
19c0923
bea11aa
 
 
 
 
 
1ff1aab
5524ef7
1ff1aab
19c0923
1ff1aab
 
19c0923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ff1aab
 
19c0923
 
 
 
 
 
 
 
 
 
 
 
1ff1aab
5524ef7
1ff1aab
a459327
 
1ff1aab
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
import os
import io
import gradio as gr
import torch
import numpy as np
import re
import pronouncing
import functools
from transformers import (
    AutoModelForAudioClassification,
    AutoFeatureExtractor,
    AutoTokenizer,
    pipeline,
    AutoModelForCausalLM,
    BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
    load_audio,
    extract_audio_duration,
    extract_mfcc_features,
    format_genre_results,
    ensure_cuda_availability
)
from emotionanalysis import MusicAnalyzer 
import librosa
from beat_analysis import BeatAnalyzer  # Import the BeatAnalyzer class

# Initialize beat analyzer
beat_analyzer = BeatAnalyzer()

# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
    login(token=os.environ["HF_TOKEN"])

# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "Qwen/QwQ-32B"
SAMPLE_RATE = 22050  # Standard sample rate for audio processing

# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()

# Load models at initialization time
print("Loading genre classification model...")
try:
    genre_feature_extractor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
    genre_model = AutoModelForAudioClassification.from_pretrained(
        GENRE_MODEL_NAME,
        device_map="auto" if CUDA_AVAILABLE else None
    )
    # Create a convenience wrapper function with the same interface as before
    def get_genre_model():
        return genre_model, genre_feature_extractor
except Exception as e:
    print(f"Error loading genre model: {str(e)}")
    genre_model = None
    genre_feature_extractor = None

# Load LLM and tokenizer at initialization time
print("Loading Qwen QwQ-32B model with 4-bit quantization...")
try:
    # Configure 4-bit quantization for better performance
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.float16,
        bnb_4bit_use_double_quant=True
    )
    
    llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
    llm_model = AutoModelForCausalLM.from_pretrained(
        LLM_MODEL_NAME,
        quantization_config=quantization_config,
        device_map="auto",
        trust_remote_code=True,
        torch_dtype=torch.float16,
        use_cache=True
    )
except Exception as e:
    print(f"Error loading LLM model: {str(e)}")
    llm_tokenizer = None
    llm_model = None

# Create music analyzer instance
music_analyzer = MusicAnalyzer()

# Process uploaded audio file
def process_audio(audio_file, custom_prompt=""):
    if audio_file is None:
        return "No audio file provided", None, None, None, None, None, None, None, None, None
    
    try:
        # Load and analyze audio
        y, sr = load_audio(audio_file, sr=SAMPLE_RATE)
        
        # Basic audio information
        duration = extract_audio_duration(y, sr)
        
        # Detect time signature using BeatAnalyzer
        time_sig_result = beat_analyzer.detect_time_signature(audio_file)
        time_signature = time_sig_result["time_signature"]
        
        # Analyze music with MusicAnalyzer for emotion and theme analysis
        music_analysis = music_analyzer.analyze_music(audio_file)
        
        # Extract key information
        tempo = music_analysis["rhythm_analysis"]["tempo"]
        
        # Get top two emotions
        emotion_scores = music_analysis["emotion_analysis"]["emotion_scores"]
        sorted_emotions = sorted(emotion_scores.items(), key=lambda x: x[1], reverse=True)
        primary_emotion = sorted_emotions[0][0]
        secondary_emotion = sorted_emotions[1][0] if len(sorted_emotions) > 1 else None
        
        # Get top two themes
        theme_scores = music_analysis["theme_analysis"]["theme_scores"]
        sorted_themes = sorted(theme_scores.items(), key=lambda x: x[1], reverse=True)
        primary_theme = sorted_themes[0][0]
        secondary_theme = sorted_themes[1][0] if len(sorted_themes) > 1 else None
        
        # Use genre classification directly instead of pipeline
        if genre_model is not None and genre_feature_extractor is not None:
            # Resample audio to 16000 Hz for the genre model
            y_16k = librosa.resample(y, orig_sr=sr, target_sr=16000)
            
            # Extract features
            inputs = genre_feature_extractor(
                y_16k, 
                sampling_rate=16000, 
                return_tensors="pt"
            ).to(genre_model.device)
            
            # Classify genre
            with torch.no_grad():
                outputs = genre_model(**inputs)
                logits = outputs.logits
                probs = torch.nn.functional.softmax(logits, dim=-1)
                
            # Get top genres
            values, indices = torch.topk(probs[0], k=5)
            top_genres = [(genre_model.config.id2label[idx.item()], val.item()) for val, idx in zip(values, indices)]
        else:
            # Fallback if model loading failed
            top_genres = [("Unknown", 1.0)]
        
        # Format genre results for display
        genre_results_text = format_genre_results(top_genres)
        primary_genre = top_genres[0][0]
        
        # Ensure time signature is one of the supported ones (4/4, 3/4, 6/8)
        if time_signature not in ["4/4", "3/4", "6/8"]:
            time_signature = "4/4"  # Default to 4/4 if unsupported
        
        # Analyze beat patterns and create lyrics template using the time signature
        beat_analysis = beat_analyzer.analyze_beat_pattern(audio_file, time_signature=time_signature, auto_detect=False)
        lyric_templates = beat_analyzer.create_lyric_template(beat_analysis)
        
        # Store these in the music_analysis dict for use in lyrics generation
        music_analysis["beat_analysis"] = beat_analysis
        music_analysis["lyric_templates"] = lyric_templates
        
        # Prepare analysis summary
        analysis_summary = f"""
### Music Analysis Results

**Duration:** {duration:.2f} seconds
**Tempo:** {tempo:.1f} BPM
**Time Signature:** {time_signature} (Confidence: {time_sig_result["confidence"]:.1%})
**Key:** {music_analysis["tonal_analysis"]["key"]} {music_analysis["tonal_analysis"]["mode"]}

**Emotions:**
- Primary: {primary_emotion} (Confidence: {emotion_scores[primary_emotion]:.1%})
- Secondary: {secondary_emotion} (Confidence: {emotion_scores[secondary_emotion]:.1%})

**Themes:**
- Primary: {primary_theme} (Confidence: {theme_scores[primary_theme]:.1%})
- Secondary: {secondary_theme} (Confidence: {theme_scores[secondary_theme]:.1%})

**Top Genre:** {primary_genre}

{genre_results_text}
"""

        # Add beat analysis summary
        if lyric_templates:
            analysis_summary += f"""
### Beat Analysis

**Total Phrases:** {len(lyric_templates)}
**Average Beats Per Phrase:** {np.mean([t['num_beats'] for t in lyric_templates]):.1f}
**Beat Pattern Examples:** 
- Phrase 1: {lyric_templates[0]['stress_pattern'] if lyric_templates else 'N/A'}
- Phrase 2: {lyric_templates[1]['stress_pattern'] if len(lyric_templates) > 1 else 'N/A'}
"""
        
        # Check if genre is supported for lyrics generation
        genre_supported = any(genre.lower() in primary_genre.lower() for genre in beat_analyzer.supported_genres)
        
        # Generate lyrics only for supported genres
        if genre_supported:
            lyrics = generate_lyrics(music_analysis, primary_genre, duration, custom_prompt)
            beat_match_analysis = analyze_lyrics_rhythm_match(lyrics, lyric_templates, primary_genre)
        else:
            supported_genres_str = ", ".join([genre.capitalize() for genre in beat_analyzer.supported_genres])
            lyrics = f"Lyrics generation is only supported for the following genres: {supported_genres_str}.\n\nDetected genre '{primary_genre}' doesn't have strong syllable-to-beat patterns required for our lyric generation algorithm."
            beat_match_analysis = "Lyrics generation not available for this genre."
        
        return analysis_summary, lyrics, tempo, time_signature, primary_emotion, secondary_emotion, primary_theme, secondary_theme, primary_genre, beat_match_analysis
    
    except Exception as e:
        error_msg = f"Error processing audio: {str(e)}"
        print(error_msg)
        return error_msg, None, None, None, None, None, None, None, None, None

def generate_lyrics(music_analysis, genre, duration, custom_prompt=""):
    try:
        # Extract meaningful information for context
        tempo = music_analysis["rhythm_analysis"]["tempo"]
        key = music_analysis["tonal_analysis"]["key"]
        mode = music_analysis["tonal_analysis"]["mode"]
        
        # Get both primary and secondary emotions and themes
        emotion_scores = music_analysis["emotion_analysis"]["emotion_scores"]
        sorted_emotions = sorted(emotion_scores.items(), key=lambda x: x[1], reverse=True)
        primary_emotion = sorted_emotions[0][0]
        secondary_emotion = sorted_emotions[1][0] if len(sorted_emotions) > 1 else None
        
        theme_scores = music_analysis["theme_analysis"]["theme_scores"]
        sorted_themes = sorted(theme_scores.items(), key=lambda x: x[1], reverse=True)
        primary_theme = sorted_themes[0][0]
        secondary_theme = sorted_themes[1][0] if len(sorted_themes) > 1 else None
        
        # Get beat analysis and templates
        lyric_templates = music_analysis.get("lyric_templates", [])
        
        # Define num_phrases here to ensure it's available in all code paths
        # Also define syllable limits for the prompt
        if not lyric_templates:
            num_phrases_for_prompt = 4  # Default if no templates
            min_syl_for_prompt = 2
            max_syl_for_prompt = 7
            
            # Build the base prompt
            base_prompt = f'''You are a professional songwriter. Write song lyrics for a {genre} song.

SONG DETAILS:
- Key: {key} {mode}
- Tempo: {tempo} BPM
- Primary emotion: {primary_emotion}
- Secondary emotion: {secondary_emotion}
- Primary theme: {primary_theme}
- Secondary theme: {secondary_theme}'''

            # Add custom requirements if provided
            custom_requirements = ""
            if custom_prompt and custom_prompt.strip():
                custom_requirements = f'''

SPECIAL REQUIREMENTS FROM USER:
{custom_prompt.strip()}
Please incorporate these requirements while still following all the technical constraints below.'''

            prompt = base_prompt + custom_requirements + f'''

CRITICAL REQUIREMENTS (MOST IMPORTANT):
- You MUST write EXACTLY {num_phrases_for_prompt} lines of lyrics.
- Number each lyric line starting from 1 up to {num_phrases_for_prompt}. For example:
  1. First lyric line.
  2. Second lyric line.
  ...
  {num_phrases_for_prompt}. The final lyric line.
- Each numbered line (after removing the number and period) MUST be {min_syl_for_prompt}-{max_syl_for_prompt} syllables MAXIMUM.
- NO line's content (after removing the number) can exceed {max_syl_for_prompt} syllables. This is EXTREMELY IMPORTANT.
- Count syllables carefully for the content of each numbered line.
- Use SHORT WORDS and SHORT PHRASES for the content of each numbered line.
- Break long thoughts into multiple numbered lines.

CREATIVITY GUIDELINES:
- Create original, vivid imagery that captures the emotions.
- Use concrete, sensory details (what you see, hear, feel, touch).
- Avoid clichΓ©s and common phrases.
- Draw inspiration from the specific themes and emotions listed above.
- Think about unique moments, specific objects, or personal details.
- Use unexpected word combinations.
- Focus on the particular mood created by {primary_emotion} and {secondary_emotion}.

STYLE FOR SHORT LINES (for the content of each numbered line):
- Use brief, impactful phrases.
- Focus on single images or moments per line.
- Choose simple, everyday words.
- Let each line paint one clear picture.

ABSOLUTELY NO placeholders like [line], [moment], [breath], [phrase], [word], etc.

OUTPUT FORMAT:
Under the "LYRICS:" heading, provide exactly {num_phrases_for_prompt} numbered lyric lines.

LYRICS:
(Your {num_phrases_for_prompt} numbered lyric lines go here, each starting with its number, a period, and a space)

Remember: Output EXACTLY {num_phrases_for_prompt} numbered lyric lines. Each line's content (after removing the number) must be {min_syl_for_prompt}-{max_syl_for_prompt} syllables.'''
        else:
            # Calculate the typical syllable range for this genre
            num_phrases_for_prompt = len(lyric_templates)
            max_syl_for_prompt = max([t.get('max_expected', 7) for t in lyric_templates]) if lyric_templates and lyric_templates[0].get('max_expected') else 7
            min_syl_for_prompt = min([t.get('min_expected', 2) for t in lyric_templates]) if lyric_templates and lyric_templates[0].get('min_expected') else 2
            
            # Build the base prompt
            base_prompt = f'''You are a professional songwriter. Write song lyrics for a {genre} song.

SONG DETAILS:
- Key: {key} {mode}
- Tempo: {tempo} BPM
- Primary emotion: {primary_emotion}
- Secondary emotion: {secondary_emotion}
- Primary theme: {primary_theme}
- Secondary theme: {secondary_theme}'''

            # Add custom requirements if provided
            custom_requirements = ""
            if custom_prompt and custom_prompt.strip():
                custom_requirements = f'''

SPECIAL REQUIREMENTS FROM USER:
{custom_prompt.strip()}
Please incorporate these requirements while still following all the technical constraints below.'''

            prompt = base_prompt + custom_requirements + f'''

CRITICAL REQUIREMENTS (MOST IMPORTANT):
- You MUST write EXACTLY {num_phrases_for_prompt} lines of lyrics.
- Number each lyric line starting from 1 up to {num_phrases_for_prompt}. For example:
  1. First lyric line.
  2. Second lyric line.
  ...
  {num_phrases_for_prompt}. The final lyric line.
- Each numbered line (after removing the number and period) MUST be {min_syl_for_prompt}-{max_syl_for_prompt} syllables MAXIMUM.
- NO line's content (after removing the number) can exceed {max_syl_for_prompt} syllables. This is EXTREMELY IMPORTANT.
- Count syllables carefully for the content of each numbered line.
- Use SHORT WORDS and SHORT PHRASES for the content of each numbered line.
- Break long thoughts into multiple numbered lines.

CREATIVITY GUIDELINES:
- Create original, vivid imagery that captures the emotions.
- Use concrete, sensory details (what you see, hear, feel, touch).
- Avoid clichΓ©s and common phrases.
- Draw inspiration from the specific themes and emotions listed above.
- Think about unique moments, specific objects, or personal details.
- Use unexpected word combinations.
- Focus on the particular mood created by {primary_emotion} and {secondary_emotion}.

STYLE FOR SHORT LINES (for the content of each numbered line):
- Use brief, impactful phrases.
- Focus on single images or moments per line.
- Choose simple, everyday words.
- Let each line paint one clear picture.

ABSOLUTELY NO placeholders like [line], [moment], [breath], [phrase], [word], etc.

OUTPUT FORMAT:
Under the "LYRICS:" heading, provide exactly {num_phrases_for_prompt} numbered lyric lines.

LYRICS:
(Your {num_phrases_for_prompt} numbered lyric lines go here, each starting with its number, a period, and a space)

Remember: Output EXACTLY {num_phrases_for_prompt} numbered lyric lines. Each line's content (after removing the number) must be {min_syl_for_prompt}-{max_syl_for_prompt} syllables.'''
        # Generate with optimized parameters for QwQ model
        messages = [
            {"role": "user", "content": prompt}
        ]
        
        # Apply chat template
        text = llm_tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        
        # Tokenize and move to model device
        model_inputs = llm_tokenizer([text], return_tensors="pt").to(llm_model.device)
        
        # Generate with optimized parameters for QwQ model
        generated_ids = llm_model.generate(
            **model_inputs,
            max_new_tokens=2048,  # Increased from 1024 to give QwQ more room
            do_sample=True,
            temperature=0.6,  # QwQ recommended setting
            top_p=0.95,       # QwQ recommended setting
            top_k=30,         # QwQ recommended range 20-40
            repetition_penalty=1.1,  # Reduced to allow some repetition if needed
            pad_token_id=llm_tokenizer.eos_token_id
        )
        
        # Decode the output
        output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
        lyrics = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
        
        # ENHANCED CLEANING FOR QWQ MODEL - IMPROVED APPROACH
        # ---------------------------------------------------
        
        # QwQ often includes thinking process - we need to extract only the final lyrics
        
        # 1. First, remove any thinking tags completely (QwQ specific)
        lyrics = re.sub(r'<think>.*?</think>', '', lyrics, flags=re.DOTALL | re.IGNORECASE)
        lyrics = re.sub(r'<think>', '', lyrics, flags=re.IGNORECASE)
        lyrics = re.sub(r'</think>', '', lyrics, flags=re.IGNORECASE)
        
        # 2. Look for the LYRICS: section specifically
        lyrics_section_match = re.search(r'LYRICS:\s*\n(.*?)(?:\n\n|\Z)', lyrics, re.DOTALL | re.IGNORECASE)
        if lyrics_section_match:
            lyrics = lyrics_section_match.group(1).strip()
        else:
            # Fallback: look for other common transitions that indicate the start of actual lyrics
            lyric_start_patterns = [
                r'(?:here (?:are )?(?:the )?lyrics?:?|lyrics?:?|my lyrics?:?|song lyrics?:?)\s*',
                r'(?:here (?:is )?(?:a )?song:?|here (?:is )?my song:?)\s*',
                r'(?:\*{3,}|\={3,}|\-{3,})\s*',
                r'(?:final lyrics?:?|the lyrics?:?)\s*',
                r'```\s*'
            ]
            
            # Try to find where actual lyrics start
            lyrics_start_pos = 0
            for pattern in lyric_start_patterns:
                match = re.search(pattern, lyrics, re.IGNORECASE)
                if match:
                    lyrics_start_pos = max(lyrics_start_pos, match.end())
            
            # Keep content from the identified start position
            if lyrics_start_pos > 0:
                lyrics = lyrics[lyrics_start_pos:].strip()
        
        # 3. Split into lines and apply basic filtering
        lines = lyrics.strip().split('\n')
        clean_lines = []
        
        # 4. Simple filtering - keep only actual lyric lines
        for line in lines:
            line = line.strip()
            if not line or line.isspace():
                continue
            
            # Strip leading numbers like "1. ", "2. ", etc.
            line = re.sub(r'^\d+\.\s*', '', line)
            
            line_lower = line.lower()
            
            # Remove placeholder lines - more comprehensive pattern
            if re.match(r'^\[ *(line|moment|breath|phrase|word|sound) *\]$', line_lower):
                continue
            
            # Skip lines that are clearly not lyrics (simplified filtering)
            if any(phrase in line_lower for phrase in [
                'line 1', 'line 2', 'line 3',
                'thinking', 'lyrics:', 'format:', 'etc...', 'commentary',
                'syllables', 'requirements', 'output', 'provide'
            ]):
                continue
            
            # Skip numbered annotations
            if re.match(r'^\d+[\.\):]|^\[.*\]$', line):
                continue
            
            # Keep lines that look like actual lyrics (not too long, not too technical)
            words = line.split()
            if 1 <= len(words) <= 8 and not any(tech_word in line_lower for tech_word in [
                'syllable', 'beat', 'tempo', 'analysis', 'format', 'section'
            ]):
                clean_lines.append(line)
        
        # 5. Additional cleanup for QwQ-specific issues
        # Remove any remaining thinking fragments
        final_clean_lines = []
        for line in clean_lines:
            # Remove trailing thoughts/annotations
            line = re.sub(r'\s+//.*$', '', line)
            line = re.sub(r'\s+\(.*?\)$', '', line)
            
            # Remove syllable count annotations
            line = re.sub(r'\s*\(\d+\s*syllables?\)', '', line, flags=re.IGNORECASE)
        
            # Skip if the line became empty after cleaning
            if line.strip():
                final_clean_lines.append(line.strip())
        
        clean_lines = final_clean_lines
        
        # AGGRESSIVE SYLLABLE ENFORCEMENT - This is critical for beat matching
        if lyric_templates:
            max_allowed_syllables = max([t.get('max_expected', 6) for t in lyric_templates])
            min_allowed_syllables = min([t.get('min_expected', 2) for t in lyric_templates])
        else:
            max_allowed_syllables = 6
            min_allowed_syllables = 2

        # Enforce syllable limits on every line
        syllable_enforced_lines = []
        for line in clean_lines:
            words = line.split()
            current_syllables = sum(beat_analyzer.count_syllables(word) for word in words)
            
            # If line is within limits, keep it
            if min_allowed_syllables <= current_syllables <= max_allowed_syllables:
                syllable_enforced_lines.append(line)
            # If line is too long, we need to split it intelligently
            elif current_syllables > max_allowed_syllables:
                # Try to split into multiple shorter lines
                current_line = []
                current_count = 0
                
                for word in words:
                    word_syllables = beat_analyzer.count_syllables(word)
                    
                    # If adding this word would exceed limit, start new line
                    if current_count + word_syllables > max_allowed_syllables and current_line:
                        syllable_enforced_lines.append(" ".join(current_line))
                        current_line = [word]
                        current_count = word_syllables
                    else:
                        # Add the word to the current line
                        current_line.append(word)
                        current_count += word_syllables
                
                # Add the remaining words as final line
                if current_line and current_count >= min_allowed_syllables:
                    syllable_enforced_lines.append(" ".join(current_line))
            # Skip lines that are too short

        clean_lines = syllable_enforced_lines

        # Get required number of lines
        if lyric_templates:
            num_required = len(lyric_templates)
        else:
            num_required = 4

        # IMPORTANT: Adjust line count to match requirement
        if len(clean_lines) > num_required:
            # Too many lines - try to merge adjacent short lines first
            merged_lines = []
            i = 0
            
            while i < len(clean_lines) and len(merged_lines) < num_required:
                if i + 1 < len(clean_lines) and len(merged_lines) < num_required - 1:
                    # Check if we can merge current and next line
                    line1 = clean_lines[i]
                    line2 = clean_lines[i + 1]
                    
                    words1 = line1.split()
                    words2 = line2.split()
                    
                    syllables1 = sum(beat_analyzer.count_syllables(word) for word in words1)
                    syllables2 = sum(beat_analyzer.count_syllables(word) for word in words2)
                    
                    # If merging would stay within limits, merge them
                    if syllables1 + syllables2 <= max_allowed_syllables:
                        merged_lines.append(line1 + " " + line2)
                        i += 2
                    else:
                        merged_lines.append(line1)
                        i += 1
                else:
                    merged_lines.append(clean_lines[i])
                    i += 1
            
            # If still too many, truncate to required number
            clean_lines = merged_lines[:num_required]
            
        elif len(clean_lines) < num_required:
            # Too few lines - this is a generation failure
            # Instead of error, try to pad with empty lines or regenerate
            # For now, let's return an error message
            return f"Error: The model generated {len(clean_lines)} lines but {num_required} were required. Please try again."

        # Final check - ensure we have exactly the required number
        if len(clean_lines) != num_required:
            # If we still don't have the right number, truncate or pad
            if len(clean_lines) > num_required:
                clean_lines = clean_lines[:num_required]
            else:
                # This shouldn't happen with the above logic, but just in case
                return f"Error: Could not generate exactly {num_required} lines. Please try again."

        # Assemble final lyrics
        final_lyrics = '\n'.join(clean_lines)

        # Final sanity check - if we have nothing or very little, return an error
        if not final_lyrics or len(final_lyrics.strip()) < 15:
            return "The model output appears to be mostly thinking content. Please try regenerating for cleaner lyrics."

        return final_lyrics
    
    except Exception as e:
        error_msg = f"Error generating lyrics: {str(e)}"
        print(error_msg)
        return error_msg

def analyze_lyrics_rhythm_match(lyrics, lyric_templates, genre="pop"):
    """Analyze how well the generated lyrics match the beat patterns and syllable requirements"""
    if not lyric_templates or not lyrics:
        return "No beat templates or lyrics available for analysis."
    
    # Split lyrics into lines
    lines = lyrics.strip().split('\n')
    lines = [line for line in lines if line.strip()]  # Remove empty lines
    
    # Prepare analysis result
    result = "### Beat & Syllable Match Analysis\n\n"
    result += "| Line | Syllables | Target Range | Match | Stress Pattern |\n"
    result += "| ---- | --------- | ------------ | ----- | -------------- |\n"
    
    # Maximum number of lines to analyze (either all lines or all templates)
    line_count = min(len(lines), len(lyric_templates))
    
    # Track overall match statistics
    total_matches = 0
    total_range_matches = 0
    total_stress_matches = 0
    total_stress_percentage = 0
    total_ideal_matches = 0
    
    for i in range(line_count):
        line = lines[i]
        template = lyric_templates[i]
        
        # Check match between line and template with genre awareness
        check_result = beat_analyzer.check_syllable_stress_match(line, template, genre)
        
        # Get match symbols
        if check_result["close_to_ideal"]:
            syllable_match = "βœ“"  # Ideal or very close
        elif check_result["within_range"]:
            syllable_match = "βœ“*"  # Within range but not ideal
        else:
            syllable_match = "βœ—"  # Outside range
            
        stress_match = "βœ“" if check_result["stress_matches"] else f"{int(check_result['stress_match_percentage']*100)}%"
        
        # Update stats
        if check_result["close_to_ideal"]:
            total_matches += 1
            total_ideal_matches += 1
        elif check_result["within_range"]:
            total_range_matches += 1
            
        if check_result["stress_matches"]:
            total_stress_matches += 1
        total_stress_percentage += check_result["stress_match_percentage"]
        
        # Create visual representation of the stress pattern
        stress_visual = ""
        for char in template['stress_pattern']:
            if char == "S":
                stress_visual += "X"  # Strong
            elif char == "M":
                stress_visual += "x"  # Medium
            else:
                stress_visual += "."  # Weak
        
        # Add line to results table
        result += f"| {i+1} | {check_result['syllable_count']} | {check_result['min_expected']}-{check_result['max_expected']} | {syllable_match} | {stress_visual} |\n"
    
    # Add summary statistics
    if line_count > 0:
        exact_match_rate = (total_matches / line_count) * 100
        range_match_rate = ((total_matches + total_range_matches) / line_count) * 100
        ideal_match_rate = (total_ideal_matches / line_count) * 100
        stress_match_rate = (total_stress_matches / line_count) * 100
        avg_stress_percentage = (total_stress_percentage / line_count) * 100
        
        result += f"\n**Summary:**\n"
        result += f"- Ideal or near-ideal syllable match rate: {exact_match_rate:.1f}%\n"
        result += f"- Genre-appropriate syllable range match rate: {range_match_rate:.1f}%\n"
        result += f"- Perfect stress pattern match rate: {stress_match_rate:.1f}%\n"
        result += f"- Average stress pattern accuracy: {avg_stress_percentage:.1f}%\n"
        result += f"- Overall rhythmic accuracy: {((range_match_rate + avg_stress_percentage) / 2):.1f}%\n"
        
        # Analyze sentence flow across lines
        sentence_flow_analysis = analyze_sentence_flow(lines)
        result += f"\n**Sentence Flow Analysis:**\n"
        result += f"- Connected thought groups: {sentence_flow_analysis['connected_groups']} detected\n"
        result += f"- Average lines per thought: {sentence_flow_analysis['avg_lines_per_group']:.1f}\n"
        result += f"- Flow quality: {sentence_flow_analysis['flow_quality']}\n"
        
        # Add guidance on ideal distribution for syllables and sentence flow
        result += f"\n**Syllable & Flow Guidance:**\n"
        result += f"- Aim for {min([t.get('min_expected', 3) for t in lyric_templates])}-{max([t.get('max_expected', 7) for t in lyric_templates])} syllables per line\n"
        result += f"- Break complete thoughts across 2-3 lines for natural flow\n"
        result += f"- Connect your lyrics with sentence fragments that flow across lines\n"
        result += f"- Use conjunctions, prepositions, and dependent clauses to connect lines\n"
        
        # Add genre-specific notes
        result += f"\n**Genre Notes ({genre}):**\n"
        
        # Add appropriate genre notes based on genre
        if genre.lower() == "pop":
            result += "- Pop lyrics work well with thoughts spanning 2-3 musical phrases\n"
            result += "- Create flow by connecting lines with transitions like 'as', 'when', 'through'\n"
        elif genre.lower() == "rock":
            result += "- Rock lyrics benefit from short phrases that build into complete thoughts\n"
            result += "- Use line breaks strategically to emphasize key words\n"
        elif genre.lower() == "country":
            result += "- Country lyrics tell stories that flow naturally across multiple lines\n"
            result += "- Connect narrative elements across phrases for authentic storytelling\n"
        elif genre.lower() == "disco":
            result += "- Disco lyrics work well with phrases that create rhythmic momentum\n"
            result += "- Use line transitions that maintain energy and flow\n"
        elif genre.lower() == "metal":
            result += "- Metal lyrics can create intensity by breaking phrases at dramatic points\n"
            result += "- Connect lines to build tension and release across measures\n"
        else:
            result += "- This genre works well with connected thoughts across multiple lines\n"
            result += "- Aim for natural speech flow rather than complete thoughts per line\n"
    
    return result

def analyze_sentence_flow(lines):
    """Analyze how well the lyrics create sentence flow across multiple lines"""
    if not lines or len(lines) < 2:
        return {
            "connected_groups": 0,
            "avg_lines_per_group": 0,
            "flow_quality": "Insufficient lines to analyze"
        }
    
    # Simplified analysis looking for grammatical clues of sentence continuation
    continuation_starters = [
        'and', 'but', 'or', 'nor', 'for', 'yet', 'so',  # Coordinating conjunctions
        'as', 'when', 'while', 'before', 'after', 'since', 'until', 'because', 'although', 'though',  # Subordinating conjunctions
        'with', 'without', 'through', 'throughout', 'beyond', 'beneath', 'under', 'over', 'into', 'onto',  # Prepositions
        'to', 'from', 'by', 'at', 'in', 'on', 'of',  # Common prepositions
        'where', 'how', 'who', 'whom', 'whose', 'which', 'that',  # Relative pronouns
        'if', 'then',  # Conditional connectors
    ]
    
    # Check for lines that likely continue a thought from previous line
    connected_lines = []
    potential_groups = []
    current_group = [0]  # Start with first line
    
    for i in range(1, len(lines)):
        # Check if line starts with a continuation word
        words = lines[i].lower().split()
        
        # Empty line or no words
        if not words:
            if len(current_group) > 1:  # Only consider groups of 2+ lines
                potential_groups.append(current_group.copy())
            current_group = [i]
            continue
            
        # Check first word for continuation clues
        first_word = words[0].strip(',.!?;:')
        if first_word in continuation_starters:
            connected_lines.append(i)
            current_group.append(i)
        # Check for absence of capitalization as continuation clue
        elif not first_word[0].isupper() and first_word[0].isalpha():
            connected_lines.append(i)
            current_group.append(i)
        # Check if current line is very short (likely part of a continued thought)
        elif len(words) <= 3 and i < len(lines) - 1:
            # Look ahead to see if next line could be a continuation
            if i+1 < len(lines):
                next_words = lines[i+1].lower().split()
                if next_words and next_words[0] in continuation_starters:
                    connected_lines.append(i)
                    current_group.append(i)
                else:
                    # This might end a group
                    if len(current_group) > 1:  # Only consider groups of 2+ lines
                        potential_groups.append(current_group.copy())
                    current_group = [i]
        else:
            # This likely starts a new thought
            if len(current_group) > 1:  # Only consider groups of 2+ lines
                potential_groups.append(current_group.copy())
            current_group = [i]
    
    # Add the last group if it has multiple lines
    if len(current_group) > 1:
        potential_groups.append(current_group)
    
    # Calculate metrics
    connected_groups = len(potential_groups)
    
    if connected_groups > 0:
        avg_lines_per_group = sum(len(group) for group in potential_groups) / connected_groups
        
        # Determine flow quality
        if connected_groups >= len(lines) / 3 and avg_lines_per_group >= 2.5:
            flow_quality = "Excellent - multiple connected thoughts across lines"
        elif connected_groups >= len(lines) / 4 and avg_lines_per_group >= 2:
            flow_quality = "Good - some connected thoughts across lines"
        elif connected_groups > 0:
            flow_quality = "Fair - limited connection between lines"
        else:
            flow_quality = "Poor - mostly independent lines"
    else:
        avg_lines_per_group = 0
        flow_quality = "Poor - no connected thoughts detected"
    
    return {
        "connected_groups": connected_groups,
        "avg_lines_per_group": avg_lines_per_group,
        "flow_quality": flow_quality
    }

def enforce_syllable_limits(lines, max_syllables=6):
    """
    Enforce syllable limits by splitting or truncating lines that are too long.
    Returns a modified list of lines where no line exceeds max_syllables.
    """
    if not lines:
        return []
    
    result_lines = []
    
    for line in lines:
        words = line.split()
        if not words:
            continue
            
        # Count syllables in the line
        syllable_count = sum(beat_analyzer.count_syllables(word) for word in words)
        
        # If within limits, keep the line as is
        if syllable_count <= max_syllables:
            result_lines.append(line)
            continue
            
        # Line is too long - we need to split or truncate it
        current_line = []
        current_syllables = 0
        
        for word in words:
            word_syllables = beat_analyzer.count_syllables(word)
            
            # If adding this word would exceed the limit, start a new line
            if current_syllables + word_syllables > max_syllables and current_line:
                result_lines.append(" ".join(current_line))
                current_line = [word]
                current_syllables = word_syllables
            else:
                # Add the word to the current line
                current_line.append(word)
                current_syllables += word_syllables
        
        # Don't forget the last line if there are words left
        if current_line:
            result_lines.append(" ".join(current_line))
    
    return result_lines

# Create Gradio interface
def create_interface():
    with gr.Blocks(title="Advanced Music Analysis & Beat-Matched Lyrics Generator") as demo:
        gr.Markdown("# 🎡 Advanced Music Analysis & Beat-Matched Lyrics Generator")
        gr.Markdown("**Upload music to get comprehensive analysis and generate perfectly synchronized lyrics that match the rhythm, emotion, and structure of your audio**")
        
        with gr.Row():
            with gr.Column(scale=1):
                audio_input = gr.Audio(
                    label="🎧 Upload or Record Audio", 
                    type="filepath",
                    sources=["upload", "microphone"]
                )
                
                # Add custom prompt input
                custom_prompt_input = gr.Textbox(
                    label="🎨 Custom Lyrics Requirements (Optional)",
                    placeholder="e.g., 'Write about a rainy day in the city' or 'Include metaphors about flying' or 'Make it about overcoming challenges'",
                    lines=3,
                    info="Add any specific requirements, themes, or creative directions for the lyrics. This will be merged with the music analysis to create personalized lyrics."
                )
                
                analyze_btn = gr.Button("πŸš€ Analyze Music & Generate Lyrics", variant="primary", size="lg")
            
            with gr.Column(scale=2):
                with gr.Tab("πŸ“Š Music Analysis"):
                    analysis_output = gr.Textbox(label="Comprehensive Music Analysis Results", lines=10)
                    
                    with gr.Row():
                        tempo_output = gr.Number(label="πŸ₯ Tempo (BPM)")
                        time_sig_output = gr.Textbox(label="⏱️ Time Signature")
                    
                    with gr.Row():
                        primary_emotion_output = gr.Textbox(label="😊 Primary Emotion")
                        secondary_emotion_output = gr.Textbox(label="😌 Secondary Emotion")
                    
                    with gr.Row():
                        primary_theme_output = gr.Textbox(label="🎭 Primary Theme")
                        secondary_theme_output = gr.Textbox(label="πŸŽͺ Secondary Theme")
                        genre_output = gr.Textbox(label="🎼 Primary Genre")
                
                with gr.Tab("🎀 Generated Lyrics"):
                    lyrics_output = gr.Textbox(label="Beat-Synchronized Lyrics", lines=20)
                
                with gr.Tab("🎯 Beat Matching Analysis"):
                    beat_match_output = gr.Markdown(label="Rhythm & Syllable Synchronization Analysis")
        
        # Set up event handlers
        analyze_btn.click(
            fn=process_audio,
            inputs=[audio_input, custom_prompt_input],
            outputs=[
                analysis_output, lyrics_output, tempo_output, time_sig_output,
                primary_emotion_output, secondary_emotion_output,
                primary_theme_output, secondary_theme_output,
                genre_output, beat_match_output
            ]
        )
        
        # Format supported genres for display
        supported_genres_md = "\n".join([f"- **{genre.capitalize()}**: Optimized for {genre} music patterns" for genre in beat_analyzer.supported_genres])
        
        gr.Markdown(f"""
        ## πŸš€ How It Works
        
        1. **🎧 Upload Audio**: Support for various formats (MP3, WAV, etc.) or record directly in your browser
        2. **🎨 Add Custom Requirements** (Optional): Specify your creative vision, themes, or style preferences
        3. **πŸ” Advanced Analysis**: Multi-layered analysis including:
           - **Tempo & Time Signature**: Advanced detection using multiple algorithms
           - **Emotional Profiling**: 8-dimensional emotion mapping (happy, sad, excited, calm, etc.)
           - **Thematic Analysis**: Musical themes (love, triumph, adventure, reflection, etc.)
           - **Beat Pattern Extraction**: Precise rhythm and stress pattern identification
           - **Genre Classification**: AI-powered genre detection with confidence scores
        4. **🎀 Lyrics Generation**: AI creates perfectly synchronized lyrics that:
           - **Match Beat Patterns**: Each line aligns with musical phrases and rhythm
           - **Follow Syllable Constraints**: Precise syllable-to-beat mapping for natural flow
           - **Incorporate Emotions & Themes**: Blend detected musical characteristics
           - **Include Your Requirements**: Merge your creative directions seamlessly
        5. **πŸ“Š Quality Analysis**: Comprehensive metrics showing beat matching accuracy and flow quality
        
        ## 🎨 Custom Requirements Examples
        
        **🌟 Themes**: "Write about nature and freedom", "Focus on urban nightlife", "Tell a story about friendship"
        
        **πŸ–ΌοΈ Imagery**: "Use ocean metaphors", "Include references to stars and sky", "Focus on light and shadow"
        
        **πŸ‘οΈ Perspective**: "From a child's viewpoint", "Make it nostalgic", "Focus on hope and resilience"
        
        **✍️ Style**: "Use simple everyday language", "Include some rhyming", "Make it conversational"
        
        **πŸ“ Content**: "Avoid sad themes", "Include words 'journey' and 'home'", "Focus on personal growth"
        
        The system intelligently blends your requirements with detected musical characteristics to create personalized, rhythm-perfect lyrics.
        
        ## 🎡 Supported Genres for Full Lyrics Generation
        
        **βœ… Full Support** (Complete Analysis + Beat-Matched Lyrics):
        {supported_genres_md}
        
        These genres have consistent syllable-to-beat patterns that work optimally with our advanced rhythm-matching algorithm.
        
        **πŸ“Š Analysis Only**: All other genres receive comprehensive musical analysis (tempo, emotion, themes, etc.) without lyrics generation.
        
        ## πŸ› οΈ Advanced Features
        
        - **🎯 Beat Synchronization**: Syllable-perfect alignment with musical phrases
        - **🧠 Emotion Integration**: Lyrics reflect detected emotional characteristics
        - **🎭 Theme Incorporation**: Musical themes guide lyrical content
        - **πŸ“ Quality Metrics**: Detailed analysis of rhythm matching accuracy
        - **πŸ”„ Flow Optimization**: Natural sentence continuation across lines
        - **βš™οΈ Genre Optimization**: Tailored patterns for different musical styles
        """)
    
    return demo

# Launch the app
demo = create_interface()

if __name__ == "__main__":
    demo.launch()
else:
    # For Hugging Face Spaces
    app = demo