Spaces:
Paused
Paused
File size: 28,467 Bytes
85600f5 26e8660 85600f5 26e8660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from io import BytesIO
import base64
import os
import re
import warnings
warnings.filterwarnings("ignore")
# ML/NLP imports
try:
from sentence_transformers import SentenceTransformer, CrossEncoder
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
import faiss
from rank_bm25 import BM25Okapi
import nltk
from nltk.tokenize import word_tokenize
import pdfplumber
import PyPDF2
from docx import Document
from datasets import load_dataset
ML_IMPORTS_AVAILABLE = True
except ImportError as e:
st.error(f"Missing required ML libraries: {e}")
ML_IMPORTS_AVAILABLE = False
# Download NLTK data
try:
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
except:
pass
# Page configuration
st.set_page_config(
page_title="π€ AI Resume Screener",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize session state
if 'models_loaded' not in st.session_state:
st.session_state.models_loaded = False
if 'embedding_model' not in st.session_state:
st.session_state.embedding_model = None
if 'cross_encoder' not in st.session_state:
st.session_state.cross_encoder = None
if 'llm_tokenizer' not in st.session_state:
st.session_state.llm_tokenizer = None
if 'llm_model' not in st.session_state:
st.session_state.llm_model = None
if 'model_errors' not in st.session_state:
st.session_state.model_errors = {}
if 'resume_texts' not in st.session_state:
st.session_state.resume_texts = []
if 'resume_filenames' not in st.session_state:
st.session_state.resume_filenames = []
if 'results' not in st.session_state:
st.session_state.results = None
def load_models():
"""Load all ML models at startup"""
if st.session_state.models_loaded:
return
st.info("π Loading AI models... This may take a few minutes on first run.")
# Load embedding model
try:
print("Loading embedding model: BAAI/bge-large-en-v1.5")
st.text("Loading embedding model...")
try:
st.session_state.embedding_model = SentenceTransformer(
'BAAI/bge-large-en-v1.5',
device_map="auto"
)
except Exception as e:
print(f"Device map failed, falling back to default: {e}")
st.session_state.embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5')
print("β
Embedding model loaded successfully")
except Exception as e:
print(f"β Error loading embedding model: {e}")
st.session_state.model_errors['embedding'] = str(e)
# Load cross-encoder
try:
print("Loading cross-encoder: cross-encoder/ms-marco-MiniLM-L6-v2")
st.text("Loading cross-encoder...")
st.session_state.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
print("β
Cross-encoder loaded successfully")
except Exception as e:
print(f"β Error loading cross-encoder: {e}")
st.session_state.model_errors['cross_encoder'] = str(e)
# Load LLM for intent analysis
try:
print("Loading LLM: Qwen/Qwen2-1.5B") # Using smaller model for better compatibility
st.text("Loading LLM for intent analysis...")
# Quantization config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
st.session_state.llm_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B")
st.session_state.llm_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-1.5B",
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
print("β
LLM loaded successfully")
except Exception as e:
print(f"β Error loading LLM: {e}")
st.session_state.model_errors['llm'] = str(e)
st.session_state.models_loaded = True
st.success("β
All models loaded successfully!")
class ResumeScreener:
def __init__(self):
self.embedding_model = st.session_state.embedding_model
self.cross_encoder = st.session_state.cross_encoder
self.llm_tokenizer = st.session_state.llm_tokenizer
self.llm_model = st.session_state.llm_model
# Predefined skills list
self.skills_list = [
'python', 'java', 'javascript', 'react', 'angular', 'vue', 'node.js',
'sql', 'mongodb', 'postgresql', 'mysql', 'aws', 'azure', 'gcp',
'docker', 'kubernetes', 'git', 'machine learning', 'deep learning',
'tensorflow', 'pytorch', 'scikit-learn', 'pandas', 'numpy',
'html', 'css', 'bootstrap', 'tailwind', 'api', 'rest', 'graphql',
'microservices', 'agile', 'scrum', 'devops', 'ci/cd', 'jenkins',
'linux', 'bash', 'shell scripting', 'data analysis', 'statistics',
'excel', 'powerbi', 'tableau', 'spark', 'hadoop', 'kafka',
'redis', 'elasticsearch', 'nginx', 'apache', 'django', 'flask',
'spring', 'express', 'fastapi', 'laravel', 'php', 'c++', 'c#',
'go', 'rust', 'scala', 'r', 'matlab', 'sas', 'spss'
]
def extract_text_from_file(self, file):
"""Extract text from uploaded files"""
try:
if file.type == "application/pdf":
# Try pdfplumber first
try:
with pdfplumber.open(file) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text() or ""
return text
except:
# Fallback to PyPDF2
file.seek(0)
reader = PyPDF2.PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
doc = Document(file)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text
elif file.type == "text/plain":
return str(file.read(), "utf-8")
elif file.type == "text/csv":
df = pd.read_csv(file)
return df.to_string()
else:
return "Unsupported file type"
except Exception as e:
st.warning(f"Error extracting text from {file.name}: {str(e)}")
return ""
def get_embedding(self, text):
"""Get embedding for text"""
if not self.embedding_model:
return None
if not text or len(text.strip()) == 0:
return np.zeros(1024) # Default embedding size for BGE
# Truncate if too long
if len(text) > 8000:
text = text[:8000]
try:
embedding = self.embedding_model.encode(text, normalize_embeddings=True)
return embedding
except Exception as e:
st.warning(f"Error getting embedding: {e}")
return np.zeros(1024)
def calculate_bm25_scores(self, resume_texts, job_description):
"""Calculate BM25 scores"""
try:
# Tokenize documents
tokenized_resumes = [word_tokenize(text.lower()) for text in resume_texts]
tokenized_job = word_tokenize(job_description.lower())
# Create BM25 object
bm25 = BM25Okapi(tokenized_resumes)
# Get scores
scores = bm25.get_scores(tokenized_job)
return scores
except Exception as e:
st.warning(f"Error calculating BM25 scores: {e}")
return np.zeros(len(resume_texts))
def faiss_recall(self, resume_texts, job_description, top_k=50):
"""FAISS-based recall for top candidates"""
try:
if not self.embedding_model:
return list(range(min(top_k, len(resume_texts))))
# Get embeddings
resume_embeddings = np.array([self.get_embedding(text) for text in resume_texts])
job_embedding = self.get_embedding(job_description).reshape(1, -1)
# Build FAISS index
dimension = resume_embeddings.shape[1]
index = faiss.IndexFlatIP(dimension) # Inner product for cosine similarity
index.add(resume_embeddings.astype('float32'))
# Search
scores, indices = index.search(job_embedding.astype('float32'), min(top_k, len(resume_texts)))
return indices[0].tolist()
except Exception as e:
st.warning(f"Error in FAISS recall: {e}")
return list(range(min(top_k, len(resume_texts))))
def cross_encoder_rerank(self, resume_texts, job_description, candidate_indices, top_k=20):
"""Re-rank candidates using cross-encoder"""
try:
if not self.cross_encoder:
return candidate_indices[:top_k]
# Prepare pairs for cross-encoder
pairs = [(job_description, resume_texts[i]) for i in candidate_indices]
# Get scores
scores = self.cross_encoder.predict(pairs)
# Sort by scores and return top_k
scored_indices = list(zip(candidate_indices, scores))
scored_indices.sort(key=lambda x: x[1], reverse=True)
return [idx for idx, _ in scored_indices[:top_k]]
except Exception as e:
st.warning(f"Error in cross-encoder reranking: {e}")
return candidate_indices[:top_k]
def analyze_intent(self, resume_text, job_description):
"""Analyze candidate intent using LLM"""
try:
if not self.llm_model or not self.llm_tokenizer:
return "Maybe", 0.5
prompt = f"""Analyze if this candidate is genuinely interested in this job based on their resume.
Job Description: {job_description[:500]}...
Resume: {resume_text[:1000]}...
Based on the alignment between the candidate's experience and the job requirements, classify their intent as:
- Yes: Strong alignment and genuine interest
- Maybe: Some alignment but unclear intent
- No: Poor alignment or likely not interested
Intent:"""
inputs = self.llm_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
with torch.no_grad():
outputs = self.llm_model.generate(
**inputs,
max_new_tokens=10,
temperature=0.1,
do_sample=True,
pad_token_id=self.llm_tokenizer.eos_token_id
)
response = self.llm_tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
# Parse response
if "yes" in response.lower():
return "Yes", 0.9
elif "no" in response.lower():
return "No", 0.1
else:
return "Maybe", 0.5
except Exception as e:
st.warning(f"Error in intent analysis: {e}")
return "Maybe", 0.5
def extract_skills(self, text, job_description):
"""Extract matching skills from resume"""
text_lower = text.lower()
job_lower = job_description.lower()
# Find skills from predefined list
found_skills = []
for skill in self.skills_list:
if skill in text_lower:
found_skills.append(skill)
# Extract job-specific keywords (simple approach)
job_words = set(re.findall(r'\b[a-zA-Z]{3,}\b', job_lower))
text_words = set(re.findall(r'\b[a-zA-Z]{3,}\b', text_lower))
job_specific = list(job_words.intersection(text_words))[:10] # Top 10
return {
'technical_skills': found_skills,
'job_specific_keywords': job_specific,
'total_skills': len(found_skills) + len(job_specific)
}
def add_bm25_scores(self, results_df, resume_texts, job_description):
"""Add BM25 scores to results"""
bm25_scores = self.calculate_bm25_scores(resume_texts, job_description)
results_df['bm25_score'] = bm25_scores
return results_df
def add_intent_scores(self, results_df, resume_texts, job_description):
"""Add intent analysis scores"""
intent_labels = []
intent_scores = []
progress_bar = st.progress(0)
for i, text in enumerate(resume_texts):
label, score = self.analyze_intent(text, job_description)
intent_labels.append(label)
intent_scores.append(score)
progress_bar.progress((i + 1) / len(resume_texts))
results_df['intent_label'] = intent_labels
results_df['intent_score'] = intent_scores
return results_df
def calculate_final_scores(self, results_df):
"""Calculate final weighted scores"""
# Normalize scores to 0-1 range
if 'cross_encoder_score' in results_df.columns:
ce_scores = (results_df['cross_encoder_score'] - results_df['cross_encoder_score'].min()) / \
(results_df['cross_encoder_score'].max() - results_df['cross_encoder_score'].min() + 1e-8)
else:
ce_scores = np.zeros(len(results_df))
if 'bm25_score' in results_df.columns:
bm25_scores = (results_df['bm25_score'] - results_df['bm25_score'].min()) / \
(results_df['bm25_score'].max() - results_df['bm25_score'].min() + 1e-8)
else:
bm25_scores = np.zeros(len(results_df))
intent_scores = results_df.get('intent_score', np.ones(len(results_df)) * 0.5)
# Weighted combination
final_scores = 0.5 * ce_scores + 0.3 * bm25_scores + 0.2 * intent_scores
results_df['final_score'] = final_scores
return results_df.sort_values('final_score', ascending=False)
def advanced_pipeline_ranking(self, resume_texts, resume_filenames, job_description):
"""Run the complete advanced pipeline"""
st.info("π Starting advanced pipeline ranking...")
# Stage 1: FAISS Recall
st.text("Stage 1: FAISS-based recall (top 50 candidates)")
top_50_indices = self.faiss_recall(resume_texts, job_description, top_k=50)
# Stage 2: Cross-encoder reranking
st.text("Stage 2: Cross-encoder reranking (top 20 candidates)")
top_20_indices = self.cross_encoder_rerank(resume_texts, job_description, top_50_indices, top_k=20)
# Create results dataframe
results_df = pd.DataFrame({
'rank': range(1, len(top_20_indices) + 1),
'filename': [resume_filenames[i] for i in top_20_indices],
'resume_index': top_20_indices
})
# Stage 3: Add cross-encoder scores
st.text("Stage 3: Adding detailed cross-encoder scores")
if self.cross_encoder:
pairs = [(job_description, resume_texts[i]) for i in top_20_indices]
ce_scores = self.cross_encoder.predict(pairs)
results_df['cross_encoder_score'] = ce_scores
# Stage 4: Add BM25 scores
st.text("Stage 4: Adding BM25 scores")
top_20_texts = [resume_texts[i] for i in top_20_indices]
results_df = self.add_bm25_scores(results_df, top_20_texts, job_description)
# Stage 5: Add intent analysis
st.text("Stage 5: Analyzing candidate intent")
results_df = self.add_intent_scores(results_df, top_20_texts, job_description)
# Calculate final scores
st.text("Calculating final weighted scores...")
results_df = self.calculate_final_scores(results_df)
# Add skills analysis
st.text("Extracting skills and keywords...")
skills_data = []
for i in top_20_indices:
skills = self.extract_skills(resume_texts[i], job_description)
skills_data.append({
'top_skills': ', '.join(skills['technical_skills'][:5]),
'job_keywords': ', '.join(skills['job_specific_keywords'][:5]),
'total_skills_count': skills['total_skills']
})
skills_df = pd.DataFrame(skills_data)
results_df = pd.concat([results_df, skills_df], axis=1)
st.success("β
Pipeline completed successfully!")
return results_df
# Load models on startup
if ML_IMPORTS_AVAILABLE and not st.session_state.models_loaded:
load_models()
# Initialize screener
if ML_IMPORTS_AVAILABLE and st.session_state.models_loaded:
screener = ResumeScreener()
# Sidebar
with st.sidebar:
st.title("π€ AI Resume Screener")
st.markdown("---")
st.subheader("π Pipeline Stages")
st.markdown("""
1. **FAISS Recall**: Semantic similarity search (top 50)
2. **Cross-Encoder**: Deep reranking (top 20)
3. **BM25 Scoring**: Keyword-based relevance
4. **Intent Analysis**: AI-powered candidate intent
5. **Final Ranking**: Weighted score combination
""")
st.subheader("π§ AI Models")
if st.session_state.models_loaded:
st.success("β
Embedding: BGE-Large-EN")
st.success("β
Cross-Encoder: MS-Marco-MiniLM")
st.success("β
LLM: Qwen2-1.5B")
else:
st.warning("β³ Models loading...")
if st.session_state.model_errors:
st.error("β Model Errors:")
for model, error in st.session_state.model_errors.items():
st.text(f"{model}: {error[:100]}...")
st.subheader("π Scoring Formula")
st.markdown("""
**Final Score = 0.5 Γ Cross-Encoder + 0.3 Γ BM25 + 0.2 Γ Intent**
- Cross-Encoder: Deep semantic matching
- BM25: Keyword relevance
- Intent: Candidate interest level
""")
# Main content
st.title("π€ AI Resume Screener")
st.markdown("Automatically rank candidate resumes against job descriptions using advanced AI")
# Step 1: Job Description Input
st.header("π Step 1: Job Description")
job_description = st.text_area(
"Enter the job description:",
height=200,
placeholder="Paste the complete job description here..."
)
# Step 2: Resume Upload
st.header("π Step 2: Load Resumes")
upload_option = st.radio(
"Choose how to load resumes:",
["Upload Files", "Upload CSV", "Load from Hugging Face Dataset"]
)
if upload_option == "Upload Files":
uploaded_files = st.file_uploader(
"Upload resume files",
type=['pdf', 'docx', 'txt'],
accept_multiple_files=True
)
if uploaded_files and st.button("Process Uploaded Files"):
with st.spinner("Processing files..."):
texts = []
filenames = []
for file in uploaded_files:
if ML_IMPORTS_AVAILABLE and st.session_state.models_loaded:
text = screener.extract_text_from_file(file)
if text:
texts.append(text)
filenames.append(file.name)
else:
st.error("Models not loaded. Cannot process files.")
break
st.session_state.resume_texts = texts
st.session_state.resume_filenames = filenames
st.success(f"β
Processed {len(texts)} resumes")
elif upload_option == "Upload CSV":
csv_file = st.file_uploader("Upload CSV with resume texts", type=['csv'])
if csv_file:
df = pd.read_csv(csv_file)
st.write("CSV Preview:", df.head())
text_column = st.selectbox("Select text column:", df.columns)
name_column = st.selectbox("Select name/ID column:", df.columns)
if st.button("Load from CSV"):
st.session_state.resume_texts = df[text_column].fillna("").tolist()
st.session_state.resume_filenames = df[name_column].fillna("Unknown").tolist()
st.success(f"β
Loaded {len(st.session_state.resume_texts)} resumes from CSV")
elif upload_option == "Load from Hugging Face Dataset":
dataset_name = st.text_input("Dataset name:", "resume-dataset/resume-screening")
if st.button("Load Dataset"):
try:
with st.spinner("Loading dataset..."):
dataset = load_dataset(dataset_name, split="train")
# Try to identify text and name columns
columns = dataset.column_names
text_col = st.selectbox("Select text column:", columns)
name_col = st.selectbox("Select name/ID column:", columns)
if text_col and name_col:
st.session_state.resume_texts = dataset[text_col][:100] # Limit to 100
st.session_state.resume_filenames = [f"Resume_{i}" for i in range(len(st.session_state.resume_texts))]
st.success(f"β
Loaded {len(st.session_state.resume_texts)} resumes from dataset")
except Exception as e:
st.error(f"Error loading dataset: {e}")
# Display current resume count
if st.session_state.resume_texts:
st.info(f"π Currently loaded: {len(st.session_state.resume_texts)} resumes")
# Step 3: Run Pipeline
st.header("π Step 3: Run Advanced Pipeline")
can_run = (
ML_IMPORTS_AVAILABLE and
st.session_state.models_loaded and
job_description.strip() and
st.session_state.resume_texts
)
if st.button("π― Run Advanced Ranking Pipeline", disabled=not can_run):
if not can_run:
if not ML_IMPORTS_AVAILABLE:
st.error("β ML libraries not available")
elif not st.session_state.models_loaded:
st.error("β Models not loaded")
elif not job_description.strip():
st.error("β Please enter a job description")
elif not st.session_state.resume_texts:
st.error("β Please load some resumes")
else:
with st.spinner("Running advanced pipeline..."):
results = screener.advanced_pipeline_ranking(
st.session_state.resume_texts,
st.session_state.resume_filenames,
job_description
)
st.session_state.results = results
# Display Results
if st.session_state.results is not None:
st.header("π Results")
# Create tabs for different views
tab1, tab2, tab3 = st.tabs(["π Summary", "π Detailed Analysis", "π Visualizations"])
with tab1:
st.subheader("Top Ranked Candidates")
# Style the dataframe
display_df = st.session_state.results[['rank', 'filename', 'final_score', 'cross_encoder_score',
'bm25_score', 'intent_score', 'intent_label', 'top_skills']].copy()
display_df['final_score'] = display_df['final_score'].round(3)
display_df['cross_encoder_score'] = display_df['cross_encoder_score'].round(3)
display_df['bm25_score'] = display_df['bm25_score'].round(3)
display_df['intent_score'] = display_df['intent_score'].round(3)
st.dataframe(display_df, use_container_width=True)
# Download link
csv = display_df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64}" download="resume_rankings.csv">π₯ Download Results as CSV</a>'
st.markdown(href, unsafe_allow_html=True)
with tab2:
st.subheader("Detailed Candidate Analysis")
for idx, row in st.session_state.results.iterrows():
with st.expander(f"#{row['rank']} - {row['filename']} (Score: {row['final_score']:.3f})"):
col1, col2 = st.columns(2)
with col1:
st.metric("Final Score", f"{row['final_score']:.3f}")
st.metric("Cross-Encoder", f"{row['cross_encoder_score']:.3f}")
st.metric("BM25 Score", f"{row['bm25_score']:.3f}")
with col2:
st.metric("Intent Score", f"{row['intent_score']:.3f}")
st.metric("Intent Label", row['intent_label'])
st.metric("Skills Count", row['total_skills_count'])
st.write("**Top Skills:**", row['top_skills'])
st.write("**Job Keywords:**", row['job_keywords'])
# Show resume excerpt
resume_text = st.session_state.resume_texts[row['resume_index']]
st.text_area("Resume Excerpt:", resume_text[:500] + "...", height=100, key=f"excerpt_{idx}")
with tab3:
st.subheader("Score Visualizations")
# Score distribution
fig1 = px.bar(
st.session_state.results.head(10),
x='filename',
y='final_score',
title="Top 10 Candidates - Final Scores",
color='final_score',
color_continuous_scale='viridis'
)
fig1.update_xaxis(tickangle=45)
st.plotly_chart(fig1, use_container_width=True)
# Score breakdown
score_cols = ['cross_encoder_score', 'bm25_score', 'intent_score']
fig2 = go.Figure()
for i, col in enumerate(score_cols):
fig2.add_trace(go.Bar(
name=col.replace('_', ' ').title(),
x=st.session_state.results['filename'].head(10),
y=st.session_state.results[col].head(10)
))
fig2.update_layout(
title="Score Breakdown - Top 10 Candidates",
barmode='group',
xaxis_tickangle=45
)
st.plotly_chart(fig2, use_container_width=True)
# Intent distribution
intent_counts = st.session_state.results['intent_label'].value_counts()
fig3 = px.pie(
values=intent_counts.values,
names=intent_counts.index,
title="Candidate Intent Distribution"
)
st.plotly_chart(fig3, use_container_width=True)
# Average metrics
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Avg Final Score", f"{st.session_state.results['final_score'].mean():.3f}")
with col2:
st.metric("Avg Cross-Encoder", f"{st.session_state.results['cross_encoder_score'].mean():.3f}")
with col3:
st.metric("Avg BM25", f"{st.session_state.results['bm25_score'].mean():.3f}")
with col4:
st.metric("Avg Intent", f"{st.session_state.results['intent_score'].mean():.3f}")
# Cleanup Controls
st.header("π§Ή Cleanup")
col1, col2 = st.columns(2)
with col1:
if st.button("Clear Resumes Only"):
st.session_state.resume_texts = []
st.session_state.resume_filenames = []
st.session_state.results = None
st.success("β
Resumes cleared")
with col2:
if st.button("Reset Entire App"):
# Clear all session state
for key in list(st.session_state.keys()):
del st.session_state[key]
# Free GPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
st.success("β
App reset complete")
st.experimental_rerun()
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center; color: #666; font-size: 0.8em;'>
π€ Powered by BGE-Large-EN, MS-Marco-MiniLM, Qwen2-1.5B | Built with Streamlit
</div>
""",
unsafe_allow_html=True
) |