Spaces:
Running
Running
File size: 16,089 Bytes
10b371e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>3D Neural Network Visualization</title>
<style>
body {
margin: 0;
overflow: hidden;
font-family: Arial, sans-serif;
color: white;
background-color: #111;
}
#canvas-container {
position: absolute;
width: 100%;
height: 100%;
}
#info-panel {
position: absolute;
top: 10px;
left: 10px;
background-color: rgba(0, 0, 0, 0.7);
padding: 15px;
border-radius: 5px;
max-width: 300px;
z-index: 100;
}
#controls {
position: absolute;
bottom: 10px;
left: 10px;
background-color: rgba(0, 0, 0, 0.7);
padding: 15px;
border-radius: 5px;
z-index: 100;
}
button, input {
margin: 5px;
padding: 8px;
background-color: #444;
color: white;
border: none;
border-radius: 3px;
cursor: pointer;
}
button:hover {
background-color: #666;
}
h1 {
margin-top: 0;
font-size: 1.2em;
}
</style>
</head>
<body>
<div id="canvas-container"></div>
<div id="info-panel">
<h1>3D Neural Network</h1>
<p>This visualization represents a simple feedforward neural network with multiple layers.</p>
<p>The connections between neurons light up when data flows through the network.</p>
<p><strong>Controls:</strong> Drag to rotate, scroll to zoom.</p>
</div>
<div id="controls">
<button id="toggle-animation">Pause Animation</button>
<button id="reset-view">Reset View</button>
<label for="layer-count">Layers: </label>
<input type="range" id="layer-count" min="2" max="7" value="4">
<span id="layer-count-value">4</span>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r128/three.min.js"></script>
<script>
// Main configuration for the network
const config = {
neuronSize: 0.15,
layerDistance: 1.5,
neuronsPerLayer: [8, 12, 10, 6], // Default structure
neuronColors: {
input: 0x4286f4,
hidden: 0x42b0f4,
output: 0xf442a7
},
animationSpeed: 0.01,
connectionOpacity: 0.3,
activeConnectionOpacity: 0.8,
activeConnectionColor: 0xffffff,
pulseDuration: 100, // Number of frames for a complete pulse
};
// Global variables
let scene, camera, renderer, neurons = [], connections = [], animationActive = true;
let networkGroup, frame = 0;
// Initialize the scene
function init() {
// Create scene
scene = new THREE.Scene();
scene.background = new THREE.Color(0x111111);
// Create camera
camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
camera.position.z = 5;
// Create renderer
renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setSize(window.innerWidth, window.innerHeight);
document.getElementById('canvas-container').appendChild(renderer.domElement);
// Add lights
const ambientLight = new THREE.AmbientLight(0x404040);
scene.add(ambientLight);
const directionalLight = new THREE.DirectionalLight(0xffffff, 0.8);
directionalLight.position.set(1, 1, 1);
scene.add(directionalLight);
// Create a group for the entire network
networkGroup = new THREE.Group();
scene.add(networkGroup);
// Create the neural network
createNeuralNetwork();
// Set up controls for orbiting
setupOrbitControls();
// Event listeners
window.addEventListener('resize', onWindowResize);
document.getElementById('toggle-animation').addEventListener('click', toggleAnimation);
document.getElementById('reset-view').addEventListener('click', resetView);
const layerSlider = document.getElementById('layer-count');
const layerCountDisplay = document.getElementById('layer-count-value');
layerSlider.addEventListener('input', function() {
layerCountDisplay.textContent = this.value;
updateNetworkStructure(parseInt(this.value));
});
// Start animation loop
animate();
}
// Create a neural network with specified layers
function createNeuralNetwork() {
neurons = [];
connections = [];
// Remove existing network if any
while(networkGroup.children.length > 0) {
networkGroup.remove(networkGroup.children[0]);
}
// Material for neurons
const inputMaterial = new THREE.MeshPhongMaterial({ color: config.neuronColors.input });
const hiddenMaterial = new THREE.MeshPhongMaterial({ color: config.neuronColors.hidden });
const outputMaterial = new THREE.MeshPhongMaterial({ color: config.neuronColors.output });
// Geometry for neurons
const neuronGeometry = new THREE.SphereGeometry(config.neuronSize, 16, 16);
// Create neurons for each layer
for (let layerIndex = 0; layerIndex < config.neuronsPerLayer.length; layerIndex++) {
const layerNeurons = [];
const neuronsInLayer = config.neuronsPerLayer[layerIndex];
let material;
if (layerIndex === 0) material = inputMaterial;
else if (layerIndex === config.neuronsPerLayer.length - 1) material = outputMaterial;
else material = hiddenMaterial;
// Calculate vertical spacing
const layerHeight = (neuronsInLayer - 1) * 0.6;
for (let neuronIndex = 0; neuronIndex < neuronsInLayer; neuronIndex++) {
const neuron = new THREE.Mesh(neuronGeometry, material);
// Position each neuron
neuron.position.x = layerIndex * config.layerDistance - (config.neuronsPerLayer.length - 1) * config.layerDistance / 2;
neuron.position.y = neuronIndex * 0.6 - layerHeight / 2;
neuron.layerIndex = layerIndex;
neuron.neuronIndex = neuronIndex;
networkGroup.add(neuron);
layerNeurons.push(neuron);
}
neurons.push(layerNeurons);
}
// Create connections between neurons
for (let layerIndex = 0; layerIndex < neurons.length - 1; layerIndex++) {
const currentLayer = neurons[layerIndex];
const nextLayer = neurons[layerIndex + 1];
for (let i = 0; i < currentLayer.length; i++) {
for (let j = 0; j < nextLayer.length; j++) {
const startNeuron = currentLayer[i];
const endNeuron = nextLayer[j];
const connectionGeometry = new THREE.BufferGeometry();
const lineMaterial = new THREE.LineBasicMaterial({
color: 0xaaaaaa,
transparent: true,
opacity: config.connectionOpacity
});
// Create a line between neurons
const points = [
startNeuron.position,
endNeuron.position
];
connectionGeometry.setFromPoints(points);
const connection = new THREE.Line(connectionGeometry, lineMaterial);
// Store connections for animation
connection.startNeuron = startNeuron;
connection.endNeuron = endNeuron;
connection.originalColor = 0xaaaaaa;
connection.activationTime = -1;
networkGroup.add(connection);
connections.push(connection);
}
}
}
}
// Update the network when layer count changes
function updateNetworkStructure(layerCount) {
// Generate a new structure with the specified number of layers
config.neuronsPerLayer = [];
// Input layer has 8 neurons
config.neuronsPerLayer.push(8);
// Generate hidden layers with varying sizes
for (let i = 0; i < layerCount - 2; i++) {
const layerSize = Math.round(6 + Math.sin(i * Math.PI / (layerCount - 2)) * 6);
config.neuronsPerLayer.push(layerSize);
}
// Output layer has 6 neurons
config.neuronsPerLayer.push(6);
// Recreate the network
createNeuralNetwork();
}
// Animation loop
function animate() {
requestAnimationFrame(animate);
if (animationActive) {
// Increment frame counter
frame += 1;
// Trigger activations
if (frame % 30 === 0) {
triggerNetworkActivation();
}
// Update all connections
updateConnections();
}
renderer.render(scene, camera);
}
// Trigger a new activation wave through the network
function triggerNetworkActivation() {
// Activate a random neuron in the input layer
const inputLayer = neurons[0];
const randomNeuronIndex = Math.floor(Math.random() * inputLayer.length);
// Get all connections from this neuron
for (let i = 0; i < connections.length; i++) {
const connection = connections[i];
if (connection.startNeuron === inputLayer[randomNeuronIndex]) {
connection.activationTime = frame;
connection.material.opacity = config.activeConnectionOpacity;
connection.material.color.set(config.activeConnectionColor);
}
}
}
// Update connection animations
function updateConnections() {
const activationLayerDuration = config.pulseDuration / (config.neuronsPerLayer.length - 1);
for (let i = 0; i < connections.length; i++) {
const connection = connections[i];
// If connection is active
if (connection.activationTime > 0) {
const elapsedFrames = frame - connection.activationTime;
// If this connection has been active long enough, propagate to next layer
if (elapsedFrames >= activationLayerDuration &&
connection.endNeuron.layerIndex < config.neuronsPerLayer.length - 1) {
// Find connections from the end neuron
for (let j = 0; j < connections.length; j++) {
const nextConnection = connections[j];
if (nextConnection.startNeuron === connection.endNeuron &&
nextConnection.activationTime < connection.activationTime) {
nextConnection.activationTime = frame;
nextConnection.material.opacity = config.activeConnectionOpacity;
nextConnection.material.color.set(config.activeConnectionColor);
}
}
}
// Fade out connection over time
if (elapsedFrames >= config.pulseDuration) {
connection.material.opacity = config.connectionOpacity;
connection.material.color.set(connection.originalColor);
connection.activationTime = -1;
}
}
}
}
// Toggle animation state
function toggleAnimation() {
animationActive = !animationActive;
document.getElementById('toggle-animation').textContent =
animationActive ? 'Pause Animation' : 'Resume Animation';
}
// Reset the camera view
function resetView() {
camera.position.set(0, 0, 5);
camera.lookAt(0, 0, 0);
}
// Handle window resize
function onWindowResize() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
}
// Basic orbit controls implementation
function setupOrbitControls() {
let isDragging = false;
let previousMousePosition = { x: 0, y: 0 };
const rotationSpeed = 0.01;
renderer.domElement.addEventListener('mousedown', function(e) {
isDragging = true;
previousMousePosition = { x: e.clientX, y: e.clientY };
});
renderer.domElement.addEventListener('mousemove', function(e) {
if (isDragging) {
const deltaMove = {
x: e.clientX - previousMousePosition.x,
y: e.clientY - previousMousePosition.y
};
networkGroup.rotation.y += deltaMove.x * rotationSpeed;
networkGroup.rotation.x += deltaMove.y * rotationSpeed;
previousMousePosition = { x: e.clientX, y: e.clientY };
}
});
renderer.domElement.addEventListener('mouseup', function() {
isDragging = false;
});
renderer.domElement.addEventListener('mouseleave', function() {
isDragging = false;
});
// Zoom functionality
renderer.domElement.addEventListener('wheel', function(e) {
e.preventDefault();
if (e.deltaY < 0) {
// Zoom in
camera.position.z = Math.max(2, camera.position.z - 0.5);
} else {
// Zoom out
camera.position.z = Math.min(10, camera.position.z + 0.5);
}
});
}
// Initialize the visualization when page loads
window.onload = init;
</script>
</body>
</html> |