File size: 5,883 Bytes
f12feee
 
 
 
 
 
8241fa6
 
f12feee
 
8241fa6
f12feee
8241fa6
 
f12feee
8241fa6
f12feee
 
8241fa6
f12feee
8241fa6
f12feee
 
 
 
 
 
 
8241fa6
 
f12feee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d353834
 
 
 
f12feee
 
 
 
 
 
 
 
 
8241fa6
 
f12feee
 
8241fa6
f12feee
 
 
8241fa6
 
f12feee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8241fa6
 
f12feee
 
 
 
 
8241fa6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import streamlit as st
import cv2
import numpy as np
from PIL import Image
from ultralytics import YOLO
import os
import time
import matplotlib.pyplot as plt
from streamlit_webrtc import webrtc_streamer, WebRtcMode
import functools
import threading

# --- Page Configuration ---  MUST BE THE VERY FIRST STREAMLIT CALL
st.set_page_config(page_title="YOLOv11 Object Detection App", page_icon="🧊", layout="wide")

# --- Load YOLO Model ---
@st.cache_resource
def load_model():
    def load_in_thread():
        try:
            model = YOLO("yolov8n.pt")  # Or your custom model path
            return model
        except Exception as e:
            st.error(f"Error loading YOLO model: {e}")
            return None

    model_thread = threading.Thread(target=load_in_thread)
    model_thread.start()
    model_thread.join()
    return load_in_thread()

model = load_model()

# --- Functions ---
def detect_objects(image, confidence_threshold=0.5, iou_threshold=0.45):
    if model is None:
        st.warning("YOLOv11 model not loaded.")
        return []

    results = model(image, conf=confidence_threshold, iou=iou_threshold)
    detections = []
    for result in results:
        if result.boxes is not None and len(result.boxes) > 0:
            for box in result.boxes:
                confidence = float(box.conf[0])
                class_id = int(box.cls[0])
                class_name = model.names[class_id]
                xyxy = box.xyxy[0].tolist()
                x1, y1, x2, y2 = map(int, xyxy)
                detections.append(((x1, y1, x2, y2), class_name, confidence))
    return detections

def draw_boxes(image, detections):
    for (x1, y1, x2, y2), class_name, confidence in detections:
        label = f"{class_name}: {confidence:.2f}"
        cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
        cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
    return image

def process_video(video_file, confidence_threshold, iou_threshold):
    try:
        video_bytes = video_file.read()
        video_path = "temp_video.mp4"
        with open(video_path, "wb") as temp_file:
            temp_file.write(video_bytes)

        cap = cv2.VideoCapture(video_path)
        frame_placeholder = st.empty()

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            detections = detect_objects(frame, confidence_threshold, iou_threshold)
            frame_with_boxes = draw_boxes(frame.copy(), detections)

            frame_with_boxes_rgb = cv2.cvtColor(frame_with_boxes, cv2.COLOR_BGR2RGB)
            img = Image.fromarray(frame_with_boxes_rgb)

            frame_placeholder.image(img, caption="Processed Video", use_column_width=True)

        cap.release()
        os.remove(video_path)
    except Exception as e:
        st.error(f"Error processing video: {e}")

def process_frame(frame, confidence_threshold, iou_threshold):
    img = frame.to_ndarray(format="bgr24")
    detections = detect_objects(img, confidence_threshold, iou_threshold)
    img_with_boxes = draw_boxes(img.copy(), detections)
    return img_with_boxes

def simulate_fine_tuning(epochs=10):
    st.write("Simulating Fine-tuning...")  # Placeholder message
    time.sleep(2)  # Simulate some processing time
    st.success(f"Fine-tuning completed (simulated for {epochs} epochs).")


# --- Main App ---
def main():
    st.title("YOLOv11 Object Detection App")

    with st.sidebar:
        st.header("Settings")
        app_mode = st.selectbox("Choose the App mode", ["About", "Run on Image", "Run on Video", "Live Camera Feed", "Fine-Tune (Simulated)"])

        confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5, 0.01, help="Min confidence for detected objects.")
        iou_threshold = st.slider("IoU Threshold", 0.0, 1.0, 0.45, 0.01, help="IoU threshold for NMS.")

        if app_mode == "Fine-Tune (Simulated)":
            num_epochs = st.slider("Number of Epochs", 1, 20, 5, 1)

    if app_mode == "About":
        st.subheader("About the App")
        st.write("This app uses YOLOv8n for object detection.")  # Updated model name
        st.write("Upload an image or video, or use your camera.")

    elif app_mode == "Run on Image":
        st.subheader("Object Detection on Image")
        uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

        if uploaded_file is not None:
            image = Image.open(uploaded_file)
            st.image(image, caption="Uploaded Image.", use_column_width=True)

            image_cv = np.array(image)
            image_cv = cv2.cvtColor(image_cv, cv2.COLOR_RGB2BGR)

            if st.button("Detect Objects"):
                detections = detect_objects(image_cv, confidence_threshold, iou_threshold)
                image_with_boxes = draw_boxes(image_cv.copy(), detections)
                image_with_boxes_rgb = cv2.cvtColor(image_with_boxes, cv2.COLOR_BGR2RGB)
                st.image(image_with_boxes_rgb, caption="Detected Objects", use_column_width=True)

    elif app_mode == "Run on Video":
        st.subheader("Object Detection on Video")
        video_file = st.file_uploader("Choose a video...", type=["mp4", "avi"])

        if video_file is not None:
            process_video(video_file, confidence_threshold, iou_threshold)

    elif app_mode == "Live Camera Feed":
        st.subheader("Live Camera Feed")
        custom_process_frame = functools.partial(process_frame, confidence_threshold=confidence_threshold, iou_threshold=iou_threshold)
        webrtc_streamer(key="live-feed", video_frame_callback=custom_process_frame, mode=WebRtcMode.SENDRECV, media_stream_constraints={"video": True, "audio": False})

    elif app_mode == "Fine-Tune (Simulated)":
        simulate_fine_tuning(epochs=num_epochs)

if __name__ == "__main__":
    main()