Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ultralytics import YOLO | |
import cv2 | |
import numpy as np | |
import tempfile # For creating temporary files | |
import os | |
# Load the model (do this outside the function for efficiency) | |
try: | |
model = YOLO("yolov8n.pt") # Or your model path | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
exit() # Exit if the model fails to load | |
def detect_pedestrians(video): | |
try: | |
cap = cv2.VideoCapture(video) | |
fps = cap.get(cv2.CAP_PROP_FPS) # Get the video's FPS | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for MP4 (you can change this) | |
# Create a temporary file for the processed video | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video: | |
out = cv2.VideoWriter(temp_video.name, fourcc, fps, (width, height)) | |
temp_file_name = temp_video.name #store the file name | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
results = model(frame) | |
for result in results: | |
boxes = result.boxes | |
for box in boxes: | |
if result.names[int(box.cls)] == 'person': | |
x1, y1, x2, y2 = map(int, box.xyxy[0]) | |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
cv2.putText(frame, 'Person', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) | |
out.write(frame) # Write the processed frame to the video | |
cap.release() | |
out.release() | |
return temp_file_name # Return the path to the temporary video file | |
except Exception as e: | |
print(f"Error in detection: {e}") | |
return f"Error: {e}" # Return the error message as a string | |
iface = gr.Interface( | |
fn=detect_pedestrians, | |
inputs=gr.Video(), # No 'source' argument here | |
outputs=gr.Video(), # Output is now a video | |
title="Pedestrian Detection", | |
description="Upload a video to detect pedestrians.", | |
allow_flagging="never", | |
) | |
iface.launch() |