Upload folder using huggingface_hub
Browse files- inference.py +5 -6
inference.py
CHANGED
@@ -26,8 +26,8 @@ def inference(
|
|
26 |
content_image,
|
27 |
style_features,
|
28 |
lr,
|
29 |
-
|
30 |
-
|
31 |
alpha=1,
|
32 |
beta=1,
|
33 |
clip_grad_norm=5.0
|
@@ -35,7 +35,6 @@ def inference(
|
|
35 |
torch.manual_seed(42)
|
36 |
|
37 |
generated_image = content_image.clone().requires_grad_(True)
|
38 |
-
adam_optimizer = optim.AdamW([generated_image], lr=lr)
|
39 |
|
40 |
with torch.no_grad():
|
41 |
content_features = model(content_image)
|
@@ -48,12 +47,12 @@ def inference(
|
|
48 |
torch.nn.utils.clip_grad_norm_([generated_image], max_norm=clip_grad_norm) # clip gradients
|
49 |
return total_loss
|
50 |
|
51 |
-
|
|
|
52 |
adam_optimizer.step(lambda: closure(adam_optimizer))
|
53 |
|
54 |
lbfgs_optimizer = optim.LBFGS([generated_image], lr=lr)
|
55 |
-
|
56 |
-
for _ in tqdm(range(iterations), desc='The magic is happening (2/2) ✨'):
|
57 |
lbfgs_optimizer.step(lambda: closure(lbfgs_optimizer))
|
58 |
|
59 |
return generated_image
|
|
|
26 |
content_image,
|
27 |
style_features,
|
28 |
lr,
|
29 |
+
adam_iterations=1,
|
30 |
+
lbfgs_iterations=3,
|
31 |
alpha=1,
|
32 |
beta=1,
|
33 |
clip_grad_norm=5.0
|
|
|
35 |
torch.manual_seed(42)
|
36 |
|
37 |
generated_image = content_image.clone().requires_grad_(True)
|
|
|
38 |
|
39 |
with torch.no_grad():
|
40 |
content_features = model(content_image)
|
|
|
47 |
torch.nn.utils.clip_grad_norm_([generated_image], max_norm=clip_grad_norm) # clip gradients
|
48 |
return total_loss
|
49 |
|
50 |
+
adam_optimizer = optim.AdamW([generated_image], lr=lr)
|
51 |
+
for _ in tqdm(range(adam_iterations), desc='The magic is happening (1/2) ✨'):
|
52 |
adam_optimizer.step(lambda: closure(adam_optimizer))
|
53 |
|
54 |
lbfgs_optimizer = optim.LBFGS([generated_image], lr=lr)
|
55 |
+
for _ in tqdm(range(lbfgs_iterations), desc='The magic is happening (2/2) ✨'):
|
|
|
56 |
lbfgs_optimizer.step(lambda: closure(lbfgs_optimizer))
|
57 |
|
58 |
return generated_image
|