File size: 19,766 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import collections
import os
import random
import torch
from torch.utils.data import IterableDataset, DataLoader
import pandas as pd
import glob
from typing import List, Dict, Any, Optional, Iterator
import pyarrow.parquet as pq
from transformers import AutoTokenizer
from torchvision import transforms
import json
from PIL import Image

class RefinedWebDataset(IterableDataset):
    def __init__(self,
                 data_path,
                 rank: int = 0,
                 world_size: int = 1,
                 shuffle=True,
                 repeat=True,
                 buffer_size=1000,
                 max_length=8000,
                 num_workers=1):
        super().__init__()
        self.files = sorted(glob.glob(data_path))  
        self.rank = rank
        self.world_size = world_size
        self.shuffle = shuffle
        self.repeat = repeat
        self.buffer_size = buffer_size
        self.max_length = max_length
        self.num_workers = num_workers

        self.files = self.files[self.rank::self.world_size]

    def read_parquet_file(self, file_path):
        table = pq.read_table(file_path, columns=["content"])
        df = table.to_pandas()
        for _, row in df.iterrows():
            yield {"content": row["content"]}

    def __iter__(self):
        while True:  
            file_list = self.files
            if self.shuffle:
                random.shuffle(file_list)  

            for file in file_list:
                data_generator = self.read_parquet_file(file)
                buffer = []

                for data in data_generator:
                    text = data["content"].replace("\n", "")
                    if len(text) > self.max_length:
                        start_index = random.randint(0, len(text) - self.max_length - 1)
                        selected_text = text[start_index:start_index + self.max_length]
                    else:
                        selected_text = text

                    buffer.append({"input_ids": selected_text})

                    if len(buffer) >= self.buffer_size:
                        if self.shuffle:
                            random.shuffle(buffer)
                        for item in buffer:
                            yield item
                        buffer = []

                if buffer:
                    if self.shuffle:
                        random.shuffle(buffer)
                    for item in buffer:
                        yield item

            if not self.repeat:
                break  

    def collate_fn(self, batch):
        batched = collections.defaultdict(list)
        for data in batch:
            for k, v in data.items():
                batched[k].append(v)

        for k, v in batched.items():
            if k not in ('key', 'input_ids', 'similarity'):
                batched[k] = torch.stack(v, dim=0)

        return batched

class ChatDataset(IterableDataset):
    def __init__(self,
                 data_path,
                 rank: int = 0,
                 world_size: int = 1,
                 shuffle=True,
                 repeat=True,
                 buffer_size=1000,
                 max_length=8000,
                 num_workers=1,
                 tokenizer=None):
        super().__init__()
        self.files = sorted(glob.glob(data_path))  
        self.rank = rank
        self.world_size = world_size
        self.shuffle = shuffle
        self.repeat = repeat
        self.buffer_size = buffer_size
        self.max_length = max_length
        self.num_workers = num_workers
        self.tokenizer = tokenizer

        self.files = self.files[self.rank::self.world_size]

    def read_parquet_file(self, file_path):
        table = pq.read_table(file_path, columns=["content"])
        df = table.to_pandas()
        for _, row in df.iterrows():
            yield {"content": row["content"]}

    def __iter__(self):
        while True:  
            file_list = self.files
            if self.shuffle:
                random.shuffle(file_list)  

            for file in file_list:
                data_generator = self.read_parquet_file(file)
                buffer = []

                for data in data_generator:
                    text = data["content"]
                    if  self.tokenizer is None:
                        if len(text) > self.max_length:
                            start_index = random.randint(0, len(text) - self.max_length - 1)
                            selected_text = text[start_index:start_index + self.max_length]
                        else:
                            selected_text = text
                    else:
                        if len(self.tokenizer(text)['input_ids']) < self.max_length:
                            selected_text = text
                        else:
                            continue

                    buffer.append({"input_ids": selected_text})

                    if len(buffer) >= self.buffer_size:
                        if self.shuffle:
                            random.shuffle(buffer)
                        for item in buffer:
                            yield item
                        buffer = []

                if buffer:
                    if self.shuffle:
                        random.shuffle(buffer)
                    for item in buffer:
                        yield item

            if not self.repeat:
                break  

    def collate_fn(self, batch):
        batched = collections.defaultdict(list)
        for data in batch:
            for k, v in data.items():
                batched[k].append(v)

        for k, v in batched.items():
            if k not in ('key', 'input_ids', 'similarity'):
                batched[k] = torch.stack(v, dim=0)

        return batched

class R2iDataset(IterableDataset):
    def __init__(self,
                 data_path,
                 rank: int = 0,
                 world_size: int = 1,
                 shuffle=True,
                 repeat=True,
                 buffer_size=1000,
                 max_length=8000,
                 num_workers=1,
                 resolution=256,
                 tokenizer=None):
        super().__init__()
        self.data_path = data_path  
        self.rank = rank
        self.world_size = world_size
        self.shuffle = shuffle
        self.repeat = repeat
        self.buffer_size = buffer_size
        self.max_length = max_length
        self.num_workers = num_workers
        self.tokenizer = tokenizer
        self.resolution = resolution

    def __iter__(self):
        while True:  
            subdirs = sorted([d for d in glob.glob(os.path.join(self.data_path, "*")) if os.path.isdir(d)])
            
            if self.shuffle:
                random.shuffle(subdirs)  
            
            subdirs = subdirs[self.rank::self.world_size]

            subdirs = ['/data_storage/lbw/datasets/laion-aesthetics-12m-images-2/00000']
            
            for subdir in subdirs:
                all_files = glob.glob(os.path.join(subdir, "*.*"))
                base_names = set()
                
                for file_path in all_files:
                    base_name = os.path.splitext(os.path.basename(file_path))[0]
                    base_names.add(base_name)
                
                base_names = list(base_names)
                if self.shuffle:
                    random.shuffle(base_names)
                
                buffer = []
                
                for base_name in base_names:
                    jpg_path = os.path.join(subdir, f"{base_name}.jpg")
                    caption_path = os.path.join(subdir, f"{base_name}.caption")
                    shortcaption_path = os.path.join(subdir, f"{base_name}.shortcaption")
                    
                    if not os.path.exists(jpg_path):
                        continue
                    
                    try:
                        image = Image.open(jpg_path).convert("RGB")
                        
                        caption = ""
                        if os.path.exists(caption_path):
                            with open(caption_path, "r", encoding="utf-8") as f:
                                caption = f.read().strip()
                        
                        short_caption = ""
                        if os.path.exists(shortcaption_path):
                            with open(shortcaption_path, "r", encoding="utf-8") as f:
                                short_caption = f.read().strip()
                        
                        transformed_image = image_transform_clip({"images": image}, resolution=self.resolution)["images"]
                        
                        if self.tokenizer is not None:
                            if len(self.tokenizer(caption)['input_ids']) > self.max_length - 2:
                                continue
                        
                        prompt = (
                            '<|start_header_id|>user<|end_header_id|>\n'
                            "You should first think out a more detailed version of the description and then provide the user with the image. The detailed description is enclosed within <think> </think> tags, i.e. <think> detailed description here </think> image here\n"
                            f"{short_caption}"
                            '<eot_id><|start_header_id|>assistant<|end_header_id|>\n'
                            f"<think>{caption}</think>"
                        )

                        sample = {
                            "images": transformed_image,
                            "input_ids": prompt,
                        }
                        
                        buffer.append(sample)
                        
                        if len(buffer) >= self.buffer_size:
                            if self.shuffle:
                                random.shuffle(buffer)
                            for item in buffer:
                                yield item
                            buffer = []
                    
                    except Exception as e:
                        print(f"Error processing {jpg_path}: {e}")
                        continue
                
                if buffer:
                    if self.shuffle:
                        random.shuffle(buffer)
                    for item in buffer:
                        yield item
            
            if not self.repeat:
                break  

    def collate_fn(self, batch):
        batched = collections.defaultdict(list)
        for data in batch:
            for k, v in data.items():
                batched[k].append(v)

        for k, v in batched.items():
            if k not in ('key', 'input_ids', 'similarity'):
                batched[k] = torch.stack(v, dim=0)

        return batched

class VQADataset(IterableDataset):
    def __init__(self,
                 json_path: str,
                 image_root: str,
                 tokenizer = None,
                 rank: int = 0,
                 world_size: int = 1,
                 shuffle: bool = True,
                 repeat: bool = True,
                 buffer_size: int = 100,
                 resolution: int = 256,
                 max_length: int = 8000,
                 num_workers: int = 1,
                 image_transform_method: str = "squash"):
        super().__init__()
        self.json_path = json_path
        self.image_root = image_root
        self.tokenizer = tokenizer
        self.rank = rank
        self.world_size = world_size
        self.shuffle = shuffle
        self.repeat = repeat
        self.buffer_size = buffer_size
        self.resolution = resolution
        self.max_length = max_length 
        self.num_workers = num_workers
        self.image_transform_method = image_transform_method
        try:
            with open(self.json_path, 'r', encoding='utf-8') as f:
                raw_data = json.load(f)
        except FileNotFoundError:
            print(f"Error: Data file not found at {self.json_path}")
            self.list_data_dict = []
        except json.JSONDecodeError:
            print(f"Error: Could not decode JSON from {self.json_path}")
            self.list_data_dict = []
        else:
            self.list_data_dict = [item for item in raw_data if 'image' in item and 'conversations' in item]
        self.list_data_dict = self.list_data_dict[self.rank::self.world_size]
    def __iter__(self):
        sot_token = '<|startoftext|>'
        assistant_prompt_suffix = '<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n'
        while True:
            current_data_list = list(self.list_data_dict) 
            if self.shuffle:
                random.shuffle(current_data_list)
            buffer = []
            for item in current_data_list:
                image_relative_path = item.get('image')
                conversations = item.get('conversations', [])
                if not image_relative_path or not conversations or len(conversations) < 2:
                    continue
                num_total_messages = len(conversations)
                if num_total_messages % 2 != 0:
                     conversations = conversations[:-1]
                     num_total_messages -= 1
                     if num_total_messages < 2: continue 
                num_turns = num_total_messages // 2
                if num_turns == 0:
                    continue
                selected_num_turns = random.randint(1, num_turns)
                selected_conversations = conversations[:selected_num_turns * 2]
                image_path = os.path.join(self.image_root, image_relative_path)
                try:
                    image = Image.open(image_path).convert("RGB")
                    if self.image_transform_method == "squash":
                        transformed_image = image_transform_squash({"images": image}, resolution=self.resolution)["images"]
                    elif self.image_transform_method == "pad":
                        transformed_image = image_transform_pad({"images": image}, resolution=self.resolution)["images"]
                    else:
                        transformed_image = image_transform_clip({"images": image}, resolution=self.resolution)["images"]
                    first_human_message = selected_conversations[0]['value']
                    processed_message = first_human_message.replace('<image>\n', '').replace('\n<image>', '')
                    current_selection_messages = list(selected_conversations)
                    current_selection_messages[0] = dict(current_selection_messages[0]) 
                    current_selection_messages[0]['value'] = processed_message
                    messages = []
                    for turn in current_selection_messages:
                        role = "user" if turn["from"] == "human" else "assistant"
                        messages.append({"role": role, "content": turn["value"]})
                    formatted_text = self.tokenizer.apply_chat_template(
                        messages,
                        tokenize=False,
                        add_generation_prompt=True 
                    )
                    if formatted_text.startswith(sot_token):
                         formatted_text = formatted_text[len(sot_token):]
                    if formatted_text.endswith(assistant_prompt_suffix):
                        formatted_text = formatted_text[:-len(assistant_prompt_suffix)]
                    token_ids = self.tokenizer(formatted_text)['input_ids'] 
                    if len(token_ids) > self.max_length:
                        continue 
                    sample = {
                        "images": transformed_image,
                        "input_ids": formatted_text,
                    }
                    buffer.append(sample)
                    if len(buffer) >= self.buffer_size:
                        if self.shuffle:
                            random.shuffle(buffer)
                        for buf_item in buffer:
                            yield buf_item
                        buffer = []
                except FileNotFoundError:
                    print(f"Warning: Image file not found at {image_path}, skipping item.")
                    continue
                except Exception as e:
                    print(f"Warning: Error processing item with image {image_path}: {e}, skipping.")
                    continue
            if buffer:
                if self.shuffle:
                    random.shuffle(buffer)
                for buf_item in buffer:
                    yield buf_item
            if not self.repeat:
                break
    def collate_fn(self, batch):
        batched = collections.defaultdict(list)
        for data in batch:
            for k, v in data.items():
                batched[k].append(v)
        for k, v in batched.items():
            if k not in ('key', 'input_ids', 'similarity'):
                batched[k] = torch.stack(v, dim=0)
        return batched

def image_transform_clip(sample, resolution=256):
    image = sample["images"]
    image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image)
    image = transforms.CenterCrop((resolution, resolution))(image)
    image = transforms.ToTensor()(image)
    image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image)
    sample["images"] = image
    return sample

def image_transform_squash(sample, resolution=256):
    image = sample["images"]
    image = transforms.Resize((resolution, resolution), interpolation=transforms.InterpolationMode.BICUBIC)(image)
    image = transforms.ToTensor()(image)
    image = transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5, 0.5, 0.5])(image)
    sample["images"] = image
    return sample

def image_transform_pad(sample, resolution=256, fill_color=(255, 255, 255)):
    image = sample["images"]
    w, h = image.size
    if w == h:
        padded_image = image
    elif w < h:
        padding_needed = h - w
        padding_left = padding_needed // 2
        padding_right = padding_needed - padding_left
        pad_transform = transforms.Pad((padding_left, 0, padding_right, 0), fill=fill_color, padding_mode='constant')
        padded_image = pad_transform(image)
    else:
        padding_needed = w - h
        padding_top = padding_needed // 2
        padding_bottom = padding_needed - padding_top
        pad_transform = transforms.Pad((0, padding_top, 0, padding_bottom), fill=fill_color, padding_mode='constant')
        padded_image = pad_transform(image)
    image_resized = transforms.Resize((resolution, resolution), interpolation=transforms.InterpolationMode.BICUBIC)(padded_image)
    image_tensor = transforms.ToTensor()(image_resized)
    image_normalized = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])(image_tensor)
    sample["images"] = image_normalized
    return sample

if __name__ == '__main__':
    data_path = "/data_storage/shared/datasets/falcon-refinedweb/data/data/*.parquet"
    dataset = RefinedWebDataset(
        data_path=data_path,
        max_length=8000,
        buffer_size=0,
    )
    
    from torch.utils.data import DataLoader
    train_dataloader = DataLoader(
        dataset, 
        batch_size=1,
        sampler=None, 
        collate_fn=dataset.collate_fn,
        num_workers=0
    )
    
    print("Starting data loading test...")
    for i, batch in enumerate(train_dataloader):
        if i == 0:
            print(batch)
            print(f"Batch size: {len(batch['input_ids'])}")
            print(f"First sample length: {len(batch['input_ids'][0])}")
        if i >= 5:
            break
    print("Data loading test complete")