import collections import os import random import torch from torch.utils.data import IterableDataset, DataLoader import pandas as pd import glob from typing import List, Dict, Any, Optional, Iterator import pyarrow.parquet as pq from transformers import AutoTokenizer from torchvision import transforms import json from PIL import Image class RefinedWebDataset(IterableDataset): def __init__(self, data_path, rank: int = 0, world_size: int = 1, shuffle=True, repeat=True, buffer_size=1000, max_length=8000, num_workers=1): super().__init__() self.files = sorted(glob.glob(data_path)) self.rank = rank self.world_size = world_size self.shuffle = shuffle self.repeat = repeat self.buffer_size = buffer_size self.max_length = max_length self.num_workers = num_workers self.files = self.files[self.rank::self.world_size] def read_parquet_file(self, file_path): table = pq.read_table(file_path, columns=["content"]) df = table.to_pandas() for _, row in df.iterrows(): yield {"content": row["content"]} def __iter__(self): while True: file_list = self.files if self.shuffle: random.shuffle(file_list) for file in file_list: data_generator = self.read_parquet_file(file) buffer = [] for data in data_generator: text = data["content"].replace("\n", "") if len(text) > self.max_length: start_index = random.randint(0, len(text) - self.max_length - 1) selected_text = text[start_index:start_index + self.max_length] else: selected_text = text buffer.append({"input_ids": selected_text}) if len(buffer) >= self.buffer_size: if self.shuffle: random.shuffle(buffer) for item in buffer: yield item buffer = [] if buffer: if self.shuffle: random.shuffle(buffer) for item in buffer: yield item if not self.repeat: break def collate_fn(self, batch): batched = collections.defaultdict(list) for data in batch: for k, v in data.items(): batched[k].append(v) for k, v in batched.items(): if k not in ('key', 'input_ids', 'similarity'): batched[k] = torch.stack(v, dim=0) return batched class ChatDataset(IterableDataset): def __init__(self, data_path, rank: int = 0, world_size: int = 1, shuffle=True, repeat=True, buffer_size=1000, max_length=8000, num_workers=1, tokenizer=None): super().__init__() self.files = sorted(glob.glob(data_path)) self.rank = rank self.world_size = world_size self.shuffle = shuffle self.repeat = repeat self.buffer_size = buffer_size self.max_length = max_length self.num_workers = num_workers self.tokenizer = tokenizer self.files = self.files[self.rank::self.world_size] def read_parquet_file(self, file_path): table = pq.read_table(file_path, columns=["content"]) df = table.to_pandas() for _, row in df.iterrows(): yield {"content": row["content"]} def __iter__(self): while True: file_list = self.files if self.shuffle: random.shuffle(file_list) for file in file_list: data_generator = self.read_parquet_file(file) buffer = [] for data in data_generator: text = data["content"] if self.tokenizer is None: if len(text) > self.max_length: start_index = random.randint(0, len(text) - self.max_length - 1) selected_text = text[start_index:start_index + self.max_length] else: selected_text = text else: if len(self.tokenizer(text)['input_ids']) < self.max_length: selected_text = text else: continue buffer.append({"input_ids": selected_text}) if len(buffer) >= self.buffer_size: if self.shuffle: random.shuffle(buffer) for item in buffer: yield item buffer = [] if buffer: if self.shuffle: random.shuffle(buffer) for item in buffer: yield item if not self.repeat: break def collate_fn(self, batch): batched = collections.defaultdict(list) for data in batch: for k, v in data.items(): batched[k].append(v) for k, v in batched.items(): if k not in ('key', 'input_ids', 'similarity'): batched[k] = torch.stack(v, dim=0) return batched class R2iDataset(IterableDataset): def __init__(self, data_path, rank: int = 0, world_size: int = 1, shuffle=True, repeat=True, buffer_size=1000, max_length=8000, num_workers=1, resolution=256, tokenizer=None): super().__init__() self.data_path = data_path self.rank = rank self.world_size = world_size self.shuffle = shuffle self.repeat = repeat self.buffer_size = buffer_size self.max_length = max_length self.num_workers = num_workers self.tokenizer = tokenizer self.resolution = resolution def __iter__(self): while True: subdirs = sorted([d for d in glob.glob(os.path.join(self.data_path, "*")) if os.path.isdir(d)]) if self.shuffle: random.shuffle(subdirs) subdirs = subdirs[self.rank::self.world_size] subdirs = ['/data_storage/lbw/datasets/laion-aesthetics-12m-images-2/00000'] for subdir in subdirs: all_files = glob.glob(os.path.join(subdir, "*.*")) base_names = set() for file_path in all_files: base_name = os.path.splitext(os.path.basename(file_path))[0] base_names.add(base_name) base_names = list(base_names) if self.shuffle: random.shuffle(base_names) buffer = [] for base_name in base_names: jpg_path = os.path.join(subdir, f"{base_name}.jpg") caption_path = os.path.join(subdir, f"{base_name}.caption") shortcaption_path = os.path.join(subdir, f"{base_name}.shortcaption") if not os.path.exists(jpg_path): continue try: image = Image.open(jpg_path).convert("RGB") caption = "" if os.path.exists(caption_path): with open(caption_path, "r", encoding="utf-8") as f: caption = f.read().strip() short_caption = "" if os.path.exists(shortcaption_path): with open(shortcaption_path, "r", encoding="utf-8") as f: short_caption = f.read().strip() transformed_image = image_transform_clip({"images": image}, resolution=self.resolution)["images"] if self.tokenizer is not None: if len(self.tokenizer(caption)['input_ids']) > self.max_length - 2: continue prompt = ( '<|start_header_id|>user<|end_header_id|>\n' "You should first think out a more detailed version of the description and then provide the user with the image. The detailed description is enclosed within tags, i.e. detailed description here image here\n" f"{short_caption}" '<|start_header_id|>assistant<|end_header_id|>\n' f"{caption}" ) sample = { "images": transformed_image, "input_ids": prompt, } buffer.append(sample) if len(buffer) >= self.buffer_size: if self.shuffle: random.shuffle(buffer) for item in buffer: yield item buffer = [] except Exception as e: print(f"Error processing {jpg_path}: {e}") continue if buffer: if self.shuffle: random.shuffle(buffer) for item in buffer: yield item if not self.repeat: break def collate_fn(self, batch): batched = collections.defaultdict(list) for data in batch: for k, v in data.items(): batched[k].append(v) for k, v in batched.items(): if k not in ('key', 'input_ids', 'similarity'): batched[k] = torch.stack(v, dim=0) return batched class VQADataset(IterableDataset): def __init__(self, json_path: str, image_root: str, tokenizer = None, rank: int = 0, world_size: int = 1, shuffle: bool = True, repeat: bool = True, buffer_size: int = 100, resolution: int = 256, max_length: int = 8000, num_workers: int = 1, image_transform_method: str = "squash"): super().__init__() self.json_path = json_path self.image_root = image_root self.tokenizer = tokenizer self.rank = rank self.world_size = world_size self.shuffle = shuffle self.repeat = repeat self.buffer_size = buffer_size self.resolution = resolution self.max_length = max_length self.num_workers = num_workers self.image_transform_method = image_transform_method try: with open(self.json_path, 'r', encoding='utf-8') as f: raw_data = json.load(f) except FileNotFoundError: print(f"Error: Data file not found at {self.json_path}") self.list_data_dict = [] except json.JSONDecodeError: print(f"Error: Could not decode JSON from {self.json_path}") self.list_data_dict = [] else: self.list_data_dict = [item for item in raw_data if 'image' in item and 'conversations' in item] self.list_data_dict = self.list_data_dict[self.rank::self.world_size] def __iter__(self): sot_token = '<|startoftext|>' assistant_prompt_suffix = '<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n' while True: current_data_list = list(self.list_data_dict) if self.shuffle: random.shuffle(current_data_list) buffer = [] for item in current_data_list: image_relative_path = item.get('image') conversations = item.get('conversations', []) if not image_relative_path or not conversations or len(conversations) < 2: continue num_total_messages = len(conversations) if num_total_messages % 2 != 0: conversations = conversations[:-1] num_total_messages -= 1 if num_total_messages < 2: continue num_turns = num_total_messages // 2 if num_turns == 0: continue selected_num_turns = random.randint(1, num_turns) selected_conversations = conversations[:selected_num_turns * 2] image_path = os.path.join(self.image_root, image_relative_path) try: image = Image.open(image_path).convert("RGB") if self.image_transform_method == "squash": transformed_image = image_transform_squash({"images": image}, resolution=self.resolution)["images"] elif self.image_transform_method == "pad": transformed_image = image_transform_pad({"images": image}, resolution=self.resolution)["images"] else: transformed_image = image_transform_clip({"images": image}, resolution=self.resolution)["images"] first_human_message = selected_conversations[0]['value'] processed_message = first_human_message.replace('\n', '').replace('\n', '') current_selection_messages = list(selected_conversations) current_selection_messages[0] = dict(current_selection_messages[0]) current_selection_messages[0]['value'] = processed_message messages = [] for turn in current_selection_messages: role = "user" if turn["from"] == "human" else "assistant" messages.append({"role": role, "content": turn["value"]}) formatted_text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) if formatted_text.startswith(sot_token): formatted_text = formatted_text[len(sot_token):] if formatted_text.endswith(assistant_prompt_suffix): formatted_text = formatted_text[:-len(assistant_prompt_suffix)] token_ids = self.tokenizer(formatted_text)['input_ids'] if len(token_ids) > self.max_length: continue sample = { "images": transformed_image, "input_ids": formatted_text, } buffer.append(sample) if len(buffer) >= self.buffer_size: if self.shuffle: random.shuffle(buffer) for buf_item in buffer: yield buf_item buffer = [] except FileNotFoundError: print(f"Warning: Image file not found at {image_path}, skipping item.") continue except Exception as e: print(f"Warning: Error processing item with image {image_path}: {e}, skipping.") continue if buffer: if self.shuffle: random.shuffle(buffer) for buf_item in buffer: yield buf_item if not self.repeat: break def collate_fn(self, batch): batched = collections.defaultdict(list) for data in batch: for k, v in data.items(): batched[k].append(v) for k, v in batched.items(): if k not in ('key', 'input_ids', 'similarity'): batched[k] = torch.stack(v, dim=0) return batched def image_transform_clip(sample, resolution=256): image = sample["images"] image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image) image = transforms.CenterCrop((resolution, resolution))(image) image = transforms.ToTensor()(image) image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image) sample["images"] = image return sample def image_transform_squash(sample, resolution=256): image = sample["images"] image = transforms.Resize((resolution, resolution), interpolation=transforms.InterpolationMode.BICUBIC)(image) image = transforms.ToTensor()(image) image = transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5, 0.5, 0.5])(image) sample["images"] = image return sample def image_transform_pad(sample, resolution=256, fill_color=(255, 255, 255)): image = sample["images"] w, h = image.size if w == h: padded_image = image elif w < h: padding_needed = h - w padding_left = padding_needed // 2 padding_right = padding_needed - padding_left pad_transform = transforms.Pad((padding_left, 0, padding_right, 0), fill=fill_color, padding_mode='constant') padded_image = pad_transform(image) else: padding_needed = w - h padding_top = padding_needed // 2 padding_bottom = padding_needed - padding_top pad_transform = transforms.Pad((0, padding_top, 0, padding_bottom), fill=fill_color, padding_mode='constant') padded_image = pad_transform(image) image_resized = transforms.Resize((resolution, resolution), interpolation=transforms.InterpolationMode.BICUBIC)(padded_image) image_tensor = transforms.ToTensor()(image_resized) image_normalized = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])(image_tensor) sample["images"] = image_normalized return sample if __name__ == '__main__': data_path = "/data_storage/shared/datasets/falcon-refinedweb/data/data/*.parquet" dataset = RefinedWebDataset( data_path=data_path, max_length=8000, buffer_size=0, ) from torch.utils.data import DataLoader train_dataloader = DataLoader( dataset, batch_size=1, sampler=None, collate_fn=dataset.collate_fn, num_workers=0 ) print("Starting data loading test...") for i, batch in enumerate(train_dataloader): if i == 0: print(batch) print(f"Batch size: {len(batch['input_ids'])}") print(f"First sample length: {len(batch['input_ids'][0])}") if i >= 5: break print("Data loading test complete")