Spaces:
Running
Running
File size: 10,174 Bytes
ed21695 5402fd3 c3f75eb ed21695 5402fd3 ed21695 c3f75eb ed21695 c3f75eb ed21695 c3f75eb ed21695 c3f75eb ed21695 c3f75eb ed21695 c3f75eb ed21695 c3f75eb ed21695 c3f75eb ed21695 a5eb7ce ed21695 972a51f c3f75eb ed21695 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import gradio as gr
import requests
# import json
import os
from typing import Optional
import numpy as np
import cv2
from PIL import Image
# 后端API配置(可配置化)
BACKEND_URL = os.getenv("BACKEND_URL", "http://your-backend-server:5000")
API_ENDPOINTS = {
"submit_task": f"{BACKEND_URL}/api/v1/submit",
"query_status": f"{BACKEND_URL}/api/v1/status",
"get_result": f"{BACKEND_URL}/api/v1/result"
}
# 全局缓存原始图像
#ORIGINAL_IMAGE = cv2.imread("scene.png")
ORIGINAL_IMAGE = np.array(Image.open("scene.png").convert("RGB"))
if ORIGINAL_IMAGE is None:
raise RuntimeError("❌ 无法加载 scene.png,请确保图片文件与 app.py 同目录,并命名正确。")
# 模拟场景配置
SCENE_CONFIGS = {
"default_desk": {
"description": "标准实验桌",
"objects": ["番茄酱", "盐瓶", "餐刀", "杯子"]
},
"cluttered_desk": {
"description": "杂乱桌面场景",
"objects": ["书本", "笔", "手机", "水杯", "零食袋"]
},
"industrial_table": {
"description": "工业工作台",
"objects": ["扳手", "螺丝", "电路板", "润滑剂"]
}
}
# 可用模型列表
MODEL_CHOICES = [
"GRManipulation-v1.0",
"GR00T-N1",
"GR00T-1.5",
"Pi0",
"DP+CLIP",
"AcT+CLIP"
]
def image_to_position(image: np.ndarray, evt: gr.SelectData) -> tuple[np.ndarray, str]:
h, w = image.shape[:2]
px, py = evt.index # 点击位置 (x, y)
# 坐标转换
x = (px / w) * 2 - 1
y = -((py / h) * 2 - 1)
z = 0.1
coord_str = f"{x:.2f}, {y:.2f}, {z:.2f}"
# 使用原始图像绘制新图(保证每次只有一个点)
marked = ORIGINAL_IMAGE.copy()
cv2.circle(marked, center=(px, py), radius=8, color=(255, 0, 0), thickness=-1)
return marked, coord_str
def submit_to_backend(
scene: str,
prompt: str,
start_position: str,
max_steps: int = 100,
visualize: bool = True
) -> dict:
"""
提交任务到后端API
"""
payload = {
"scene_config": scene,
"prompt": prompt,
"start_position": start_position,
"params": {
"max_steps": max_steps,
"visualize": visualize
},
"metadata": {
"submit_from": "gradio_ui"
}
}
try:
response = requests.post(
API_ENDPOINTS["submit_task"],
json=payload,
timeout=10
)
return response.json()
except Exception as e:
return {"status": "error", "message": str(e)}
def get_task_status(task_id: str) -> dict:
"""
查询任务状态
"""
try:
response = requests.get(
f"{API_ENDPOINTS['query_status']}/{task_id}",
timeout=5
)
return response.json()
except Exception as e:
return {"status": "error", "message": str(e)}
def get_task_result(task_id: str) -> Optional[dict]:
"""
获取任务结果
"""
try:
response = requests.get(
f"{API_ENDPOINTS['get_result']}/{task_id}",
timeout=5
)
return response.json()
except Exception as e:
print(f"Error fetching result: {e}")
return None
def run_simulation(
scene: str,
prompt: str,
model: str,
progress=gr.Progress()
) -> dict:
"""
运行仿真的主函数
"""
# 提交任务到后端
progress(0.1, desc="提交任务到后端...")
submission = submit_to_backend(scene, prompt, model)
if submission.get("status") != "success":
raise gr.Error(f"提交失败: {submission.get('message', '未知错误')}")
task_id = submission["task_id"]
progress(0.3, desc="任务已提交,等待执行...")
# 轮询任务状态
max_checks = 20
for i in range(max_checks):
status = get_task_status(task_id)
if status.get("status") == "completed":
progress(0.9, desc="获取结果...")
result = get_task_result(task_id)
if result:
return {
"video": result.get("video_path"),
"metrics": result.get("metrics"),
"log": result.get("log")
}
else:
raise gr.Error("获取结果失败")
elif status.get("status") == "failed":
raise gr.Error(f"任务执行失败: {status.get('message')}")
progress(0.3 + 0.6 * (i/max_checks), desc=f"任务执行中...({status.get('progress', 0)}%)")
raise gr.Error("任务执行超时")
# 自定义CSS样式
custom_css = """
#simulation-panel {
border-radius: 8px;
padding: 20px;
background: #f9f9f9;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
#result-panel {
border-radius: 8px;
padding: 20px;
background: #f0f8ff;
}
.dark #simulation-panel { background: #2a2a2a; }
.dark #result-panel { background: #1a2a3a; }
/* 强力隐藏图像组件底部工具栏 */
.gr-image .absolute.bottom-0,
.gr-image .flex.justify-between.items-center.px-2.pb-2 {
display: none !important;
}
"""
with gr.Blocks(title="机器人导航仿真系统", css=custom_css) as demo:
# 标题和描述
gr.Markdown("""
# 🧭 GRNavigation 机器人导航仿真平台
### 基于 GRNavigation 框架的多场景路径规划与自主导航训练
""")
with gr.Row():
# 左侧控制面板
with gr.Column(elem_id="simulation-panel"):
gr.Markdown("### 仿真任务配置")
# 场景选择
scene_dropdown = gr.Dropdown(
label="选择导航环境",
choices=list(SCENE_CONFIGS.keys()),
value="default_desk",
interactive=True
)
def update_scene_desc(scene):
config = SCENE_CONFIGS.get(scene, {})
desc = config.get("description", "无描述")
objects = "、".join(config.get("objects", []))
return f"**{desc}** \n包含物体: {objects}"
# 场景描述预览
scene_description = gr.Markdown("")
# 动态更新场景描述(函数不变)
# 操作指令输入
prompt_input = gr.Textbox(
label="导航指令(自然语言)",
placeholder="例如:'从桌角出发,穿过障碍物,前往水杯位置'",
lines=2,
max_lines=4
)
# 起始坐标输入
start_pos_input = gr.Textbox(
label="起始位置坐标 (x, y, z)",
placeholder="例如:0.0, 0.0, 0.2",
lines=1
)
# 高级参数
with gr.Accordion("高级设置", open=False):
max_steps = gr.Slider(
minimum=50,
maximum=500,
value=100,
step=10,
label="最大导航步数"
)
visualize = gr.Checkbox(
value=True,
label="显示可视化界面(Isaac Sim)"
)
# 提交按钮
submit_btn = gr.Button("开始导航仿真", variant="primary")
# 右侧结果面板
with gr.Column(elem_id="result-panel"):
gr.Markdown("### 仿真结果预览")
# 视频输出
video_output = gr.Video(
label="导航过程回放",
interactive=False,
format="mp4"
)
# 场景俯视图图像(点击获取起点)
scene_image = gr.Image(
value="/scene.png", # 占位图路径
label="点击选择起点位置(场景俯视图)",
type="numpy", # 获取坐标
interactive=True,
height=300,
show_share_button=False # ✅ 关闭底部按钮(上传、拍照、复制)
)
# ✅ 添加“刷新场景图像”按钮
def reload_scene_image():
new_image = np.array(Image.open("scene.png").convert("RGB"))
global ORIGINAL_IMAGE
ORIGINAL_IMAGE = new_image
return new_image
refresh_btn = gr.Button("🔁 刷新场景图像")
refresh_btn.click(fn=reload_scene_image, outputs=scene_image)
# 指标展示
metrics_output = gr.JSON(
label="导航性能指标",
visible=False
)
# 日志输出
log_output = gr.Textbox(
label="任务执行日志",
visible=False,
lines=10,
max_lines=20
)
# 示例任务
gr.Examples(
examples=[
["default_desk", "从桌角出发,前往番茄酱附近", "0.0, 0.0, 0.1"],
["cluttered_desk", "从水杯出发,移动到手机旁", "1.0, -0.5, 0.0"],
["industrial_table", "避开扳手,从台边移动到润滑剂", "0.5, 0.2, 0.0"]
],
inputs=[scene_dropdown, prompt_input, start_pos_input],
label="导航任务示例"
)
# 提交处理逻辑
submit_btn.click(
fn=run_simulation,
inputs=[scene_dropdown, prompt_input, start_pos_input],
outputs=[video_output, metrics_output, log_output],
api_name="run_simulation"
)
# 初始场景文字描述
demo.load(
fn=lambda: (update_scene_desc("default_desk"), reload_scene_image()),
outputs=[scene_description, scene_image]
)
# ✅ 添加点击图片 → 自动设置起始位置
scene_image.select(
fn=image_to_position,
inputs=[scene_image],
outputs=[scene_image, start_pos_input]
)
# 启动应用
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True, debug=True) |