Spaces:
Running
Running
File size: 24,133 Bytes
3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca f1d9f4b 3b8bdca d54d7a7 3b8bdca d54d7a7 3b8bdca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import streamlit as st
import cv2
import numpy as np
from PIL import Image
import io
import matplotlib.pyplot as plt
def apply_threshold(image, threshold_type, thresh_value=127, max_value=255):
if threshold_type == "Binary":
_, thresh = cv2.threshold(image, thresh_value, max_value, cv2.THRESH_BINARY)
elif threshold_type == "Binary Inverse":
_, thresh = cv2.threshold(image, thresh_value, max_value, cv2.THRESH_BINARY_INV)
elif threshold_type == "Truncate":
_, thresh = cv2.threshold(image, thresh_value, max_value, cv2.THRESH_TRUNC)
elif threshold_type == "To Zero":
_, thresh = cv2.threshold(image, thresh_value, max_value, cv2.THRESH_TOZERO)
elif threshold_type == "To Zero Inverse":
_, thresh = cv2.threshold(image, thresh_value, max_value, cv2.THRESH_TOZERO_INV)
elif threshold_type == "Adaptive Mean":
thresh = cv2.adaptiveThreshold(image, max_value, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
elif threshold_type == "Adaptive Gaussian":
thresh = cv2.adaptiveThreshold(image, max_value, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
elif threshold_type == "Otsu":
_, thresh = cv2.threshold(image, 0, max_value, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return thresh
def apply_histogram_equalization(image, method):
if method == "Simple":
if len(image.shape) == 3:
img_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
img_yuv[:,:,0] = cv2.equalizeHist(img_yuv[:,:,0])
return cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)
else:
return cv2.equalizeHist(image)
elif method == "CLAHE":
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
if len(image.shape) == 3:
img_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
img_yuv[:,:,0] = clahe.apply(img_yuv[:,:,0])
return cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)
else:
return clahe.apply(image)
return image
def apply_color_quantization(image, k):
data = np.float32(image).reshape((-1,3))
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 20, 1.0)
_, label, center = cv2.kmeans(data, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
center = np.uint8(center)
result = center[label.flatten()]
return result.reshape(image.shape)
def main():
st.set_page_config(layout="wide")
st.title("Advanced Image Processing Laboratory")
st.markdown("""
<style>
.main {
background-color: #f0f2f6;
}
.stButton>button {
width: 100%;
}
</style>
""", unsafe_allow_html=True)
# Sidebar
st.sidebar.title("Controls Panel")
uploaded_file = st.sidebar.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
original_img = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
# Create columns for better layout
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Image")
st.image(cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB))
# Main processing options
processing_option = st.sidebar.selectbox(
"Select Processing Category",
["Basic Operations", "Filtering", "Color Spaces", "Thresholding",
"Morphological Operations", "Edge Detection", "Feature Detection",
"Histogram Operations", "Advanced Effects"]
)
# Process and display result
with col2:
st.subheader("Processed Image")
if processing_option == "Basic Operations":
st.sidebar.markdown("""
### Basic Operations
Transform your image with fundamental operations:
- **Resize**: Scale the image up or down
- **Rotate**: Rotate the image by any angle
- **Flip**: Mirror the image horizontally or vertically
- **Brightness/Contrast**: Adjust image lighting
- **Color Quantization**: Reduce the number of colors
""")
operation = st.sidebar.selectbox(
"Select Operation",
["Resize", "Rotate", "Flip", "Brightness/Contrast", "Color Quantization"]
)
if operation == "Resize":
st.sidebar.markdown("Adjust the scale factor to resize the image. Values > 1 enlarge, values < 1 shrink.")
scale = st.sidebar.slider("Scale Factor", 0.1, 2.0, 1.0)
processed_img = cv2.resize(original_img, None, fx=scale, fy=scale)
elif operation == "Rotate":
st.sidebar.markdown("Rotate the image by specifying an angle in degrees. Positive values rotate counter-clockwise.")
angle = st.sidebar.slider("Angle", -180, 180, 0)
center = (original_img.shape[1] // 2, original_img.shape[0] // 2)
matrix = cv2.getRotationMatrix2D(center, angle, 1.0)
processed_img = cv2.warpAffine(original_img, matrix, (original_img.shape[1], original_img.shape[0]))
elif operation == "Flip":
st.sidebar.markdown("Mirror the image in different directions.")
flip_option = st.sidebar.selectbox("Flip Direction", ["Horizontal", "Vertical", "Both"])
if flip_option == "Horizontal":
processed_img = cv2.flip(original_img, 1)
elif flip_option == "Vertical":
processed_img = cv2.flip(original_img, 0)
else:
processed_img = cv2.flip(original_img, -1)
elif operation == "Brightness/Contrast":
st.sidebar.markdown("""
Adjust image brightness and contrast:
- **Brightness**: Negative values darken, positive values brighten
- **Contrast**: Negative values decrease contrast, positive values increase it
""")
brightness = st.sidebar.slider("Brightness", -100, 100, 0)
contrast = st.sidebar.slider("Contrast", -100, 100, 0)
processed_img = original_img.copy()
if brightness != 0:
if brightness > 0:
shadow = brightness
highlight = 255
else:
shadow = 0
highlight = 255 + brightness
alpha_b = (highlight - shadow)/255
gamma_b = shadow
processed_img = cv2.addWeighted(processed_img, alpha_b, processed_img, 0, gamma_b)
if contrast != 0:
f = 131*(contrast + 127)/(127*(131-contrast))
alpha_c = f
gamma_c = 127*(1-f)
processed_img = cv2.addWeighted(processed_img, alpha_c, processed_img, 0, gamma_c)
elif operation == "Color Quantization":
st.sidebar.markdown("Reduce the number of colors in the image. Lower values create more poster-like effects.")
k = st.sidebar.slider("Number of Colors", 2, 16, 8)
processed_img = apply_color_quantization(original_img, k)
elif processing_option == "Filtering":
st.sidebar.markdown("""
### Image Filtering
Apply different filters to smooth or enhance the image:
- **Blur**: Simple averaging filter
- **Gaussian**: Weighted gaussian smoothing
- **Median**: Good for removing salt-and-pepper noise
- **Bilateral**: Edge-preserving smoothing
- **Custom Kernel**: Apply specific filter effects
""")
filter_type = st.sidebar.selectbox(
"Select Filter",
["Blur", "Gaussian", "Median", "Bilateral", "Custom Kernel"]
)
if filter_type == "Custom Kernel":
st.sidebar.markdown("Apply predefined kernel effects. Larger kernel sizes create stronger effects.")
kernel_size = st.sidebar.slider("Kernel Size", 3, 7, 3, step=2)
kernel_type = st.sidebar.selectbox("Kernel Type", ["Sharpen", "Edge Detection", "Emboss"])
if kernel_type == "Sharpen":
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
elif kernel_type == "Edge Detection":
kernel = np.array([[-1,-1,-1], [-1,8,-1], [-1,-1,-1]])
elif kernel_type == "Emboss":
kernel = np.array([[-2,-1,0], [-1,1,1], [0,1,2]])
processed_img = cv2.filter2D(original_img, -1, kernel)
else:
st.sidebar.markdown("Adjust kernel size to control the strength of the filter effect.")
kernel_size = st.sidebar.slider("Kernel Size", 3, 15, 3, step=2)
if filter_type == "Bilateral":
st.sidebar.markdown("""
Bilateral Filter Parameters:
- **d**: Diameter of pixel neighborhood
- **Sigma Color**: Filter sigma in color space
- **Sigma Space**: Filter sigma in coordinate space
""")
d = st.sidebar.slider("d", 1, 15, 9)
sigma_color = st.sidebar.slider("Sigma Color", 1, 255, 75)
sigma_space = st.sidebar.slider("Sigma Space", 1, 255, 75)
processed_img = cv2.bilateralFilter(original_img, d, sigma_color, sigma_space)
else:
if filter_type == "Blur":
processed_img = cv2.blur(original_img, (kernel_size, kernel_size))
elif filter_type == "Gaussian":
processed_img = cv2.GaussianBlur(original_img, (kernel_size, kernel_size), 0)
elif filter_type == "Median":
processed_img = cv2.medianBlur(original_img, kernel_size)
elif processing_option == "Color Spaces":
st.sidebar.markdown("""
### Color Spaces
Convert the image between different color representations:
- **RGB**: Standard Red-Green-Blue color space
- **HSV**: Hue-Saturation-Value, useful for color segmentation
- **LAB**: Perceptually uniform color space
- **YCrCb**: Used in video encoding
- **Individual Channels**: View color components separately
""")
color_space = st.sidebar.selectbox(
"Select Color Space",
["RGB", "HSV", "LAB", "YCrCb", "Individual Channels"]
)
if color_space == "RGB":
processed_img = cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB)
elif color_space == "HSV":
processed_img = cv2.cvtColor(original_img, cv2.COLOR_BGR2HSV)
elif color_space == "LAB":
processed_img = cv2.cvtColor(original_img, cv2.COLOR_BGR2LAB)
elif color_space == "YCrCb":
processed_img = cv2.cvtColor(original_img, cv2.COLOR_BGR2YCrCb)
elif color_space == "Individual Channels":
channel = st.sidebar.selectbox("Select Channel", ["Blue", "Green", "Red"])
if channel == "Blue":
processed_img = original_img[:,:,0]
elif channel == "Green":
processed_img = original_img[:,:,1]
else:
processed_img = original_img[:,:,2]
elif processing_option == "Thresholding":
# Convert to grayscale for thresholding
gray_img = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY)
threshold_type = st.sidebar.selectbox(
"Select Threshold Type",
["Binary", "Binary Inverse", "Truncate", "To Zero", "To Zero Inverse",
"Adaptive Mean", "Adaptive Gaussian", "Otsu"]
)
if threshold_type in ["Binary", "Binary Inverse", "Truncate", "To Zero", "To Zero Inverse"]:
thresh_value = st.sidebar.slider("Threshold Value", 0, 255, 127)
max_value = st.sidebar.slider("Maximum Value", 0, 255, 255)
processed_img = apply_threshold(gray_img, threshold_type, thresh_value, max_value)
else:
processed_img = apply_threshold(gray_img, threshold_type)
elif processing_option == "Morphological Operations":
operation = st.sidebar.selectbox(
"Select Operation",
["Erosion", "Dilation", "Opening", "Closing", "Gradient", "Top Hat", "Black Hat"]
)
kernel_size = st.sidebar.slider("Kernel Size", 3, 15, 5, step=2)
kernel = np.ones((kernel_size, kernel_size), np.uint8)
if operation == "Erosion":
processed_img = cv2.erode(original_img, kernel, iterations=1)
elif operation == "Dilation":
processed_img = cv2.dilate(original_img, kernel, iterations=1)
elif operation == "Opening":
processed_img = cv2.morphologyEx(original_img, cv2.MORPH_OPEN, kernel)
elif operation == "Closing":
processed_img = cv2.morphologyEx(original_img, cv2.MORPH_CLOSE, kernel)
elif operation == "Gradient":
processed_img = cv2.morphologyEx(original_img, cv2.MORPH_GRADIENT, kernel)
elif operation == "Top Hat":
processed_img = cv2.morphologyEx(original_img, cv2.MORPH_TOPHAT, kernel)
elif operation == "Black Hat":
processed_img = cv2.morphologyEx(original_img, cv2.MORPH_BLACKHAT, kernel)
elif processing_option == "Edge Detection":
st.sidebar.markdown("""
### Edge Detection
Different methods to detect edges in the image:
- **Canny**: Advanced edge detector with thresholds
- **Sobel**: Directional gradient detection
- **Laplacian**: Detect edges using 2nd derivatives
- **Scharr**: More accurate gradient calculation
""")
detector = st.sidebar.selectbox(
"Select Detector",
["Canny", "Sobel", "Laplacian", "Scharr"]
)
if detector == "Canny":
threshold1 = st.sidebar.slider("Threshold 1", 0, 255, 100)
threshold2 = st.sidebar.slider("Threshold 2", 0, 255, 200)
processed_img = cv2.Canny(original_img, threshold1, threshold2)
elif detector == "Sobel":
dx = st.sidebar.slider("dx", 0, 2, 1)
dy = st.sidebar.slider("dy", 0, 2, 1)
ksize = st.sidebar.slider("Kernel Size", 1, 7, 3, step=2)
gray = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY)
processed_img = cv2.Sobel(gray, cv2.CV_64F, dx, dy, ksize=ksize)
processed_img = np.uint8(np.absolute(processed_img))
elif detector == "Laplacian":
ksize = st.sidebar.slider("Kernel Size", 1, 7, 3, step=2)
gray = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY)
processed_img = cv2.Laplacian(gray, cv2.CV_64F, ksize=ksize)
processed_img = np.uint8(np.absolute(processed_img))
elif detector == "Scharr":
direction = st.sidebar.selectbox("Direction", ["X", "Y"])
gray = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY)
if direction == "X":
processed_img = cv2.Scharr(gray, cv2.CV_64F, 1, 0)
else:
processed_img = cv2.Scharr(gray, cv2.CV_64F, 0, 1)
processed_img = np.uint8(np.absolute(processed_img))
elif processing_option == "Feature Detection":
st.sidebar.markdown("""
### Feature Detection
Detect interesting points or features in the image:
- **Harris Corner**: Detects corner points using intensity changes
- **Shi-Tomasi**: More robust corner detection
- **FAST**: High-speed corner detection
Parameters for Harris Corner:
- **Block Size**: Size of neighborhood considered
- **Kernel Size**: Aperture parameter for Sobel operator
- **k**: Harris detector free parameter
""")
detector = st.sidebar.selectbox(
"Select Detector",
["Harris Corner", "Shi-Tomasi", "FAST"]
)
if detector == "Harris Corner":
gray = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY)
block_size = st.sidebar.slider("Block Size", 2, 10, 2)
ksize = st.sidebar.slider("Kernel Size", 3, 31, 3, step=2)
k = st.sidebar.slider("k", 0.01, 0.1, 0.04, step=0.01)
processed_img = original_img.copy()
gray = np.float32(gray)
dst = cv2.cornerHarris(gray, block_size, ksize, k)
dst = cv2.dilate(dst, None)
processed_img[dst > 0.01 * dst.max()] = [0, 0, 255]
elif detector == "Shi-Tomasi":
gray = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY)
corners = cv2.goodFeaturesToTrack(gray, 25, 0.01, 10)
corners = np.int0(corners)
processed_img = original_img.copy()
for i in corners:
x, y = i.ravel()
cv2.circle(processed_img, (x, y), 3, [0, 0, 255], -1)
elif detector == "FAST":
gray = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY)
fast = cv2.FastFeatureDetector_create()
kp = fast.detect(gray, None)
processed_img = original_img.copy()
cv2.drawKeypoints(original_img, kp, processed_img, color=(0, 0, 255))
elif processing_option == "Histogram Operations":
st.sidebar.markdown("""
### Histogram Operations
Analyze and modify image intensity distribution:
- **Show Histogram**: Display color/intensity distribution
- **Equalization**: Enhance contrast using histogram equalization
- **CLAHE**: Contrast Limited Adaptive Histogram Equalization
""")
operation = st.sidebar.selectbox(
"Select Operation",
["Show Histogram", "Equalization", "CLAHE"]
)
if operation == "Show Histogram":
fig, ax = plt.subplots()
if len(original_img.shape) == 3:
colors = ('b', 'g', 'r')
for i, color in enumerate(colors):
hist = cv2.calcHist([original_img], [i], None, [256], [0, 256])
ax.plot(hist, color=color)
else:
hist = cv2.calcHist([original_img], [0], None, [256], [0, 256])
ax.plot(hist)
st.pyplot(fig)
processed_img = original_img
elif operation == "Equalization":
processed_img = apply_histogram_equalization(original_img, "Simple")
elif operation == "CLAHE":
processed_img = apply_histogram_equalization(original_img, "CLAHE")
elif processing_option == "Advanced Effects":
st.sidebar.markdown("""
### Advanced Effects
Apply complex image transformations:
- **Pencil Sketch**: Convert image to pencil drawing style
- **Cartoon**: Create cartoon-like effect
- **HDR Effect**: Enhance local details
""")
effect = st.sidebar.selectbox(
"Select Effect",
["Pencil Sketch", "Cartoon", "HDR Effect"]
)
if effect == "Pencil Sketch":
gray = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY)
inv = 255 - gray
blur = cv2.GaussianBlur(inv, (21, 21), 0)
processed_img = cv2.divide(gray, 255-blur, scale=256.0)
elif effect == "Cartoon":
gray = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
color = cv2.bilateralFilter(original_img, 9, 250, 250)
processed_img = cv2.bitwise_and(color, color, mask=edges)
elif effect == "HDR Effect":
processed_img = cv2.detailEnhance(original_img, sigma_s=12, sigma_r=0.15)
# Display processed image
if len(processed_img.shape) == 3:
st.image(cv2.cvtColor(processed_img, cv2.COLOR_BGR2RGB))
else:
st.image(processed_img, clamp=True)
# Add download button for processed image
if st.button("Download Processed Image"):
if len(processed_img.shape) == 3:
processed_img_rgb = cv2.cvtColor(processed_img, cv2.COLOR_BGR2RGB)
else:
processed_img_rgb = processed_img
pil_img = Image.fromarray(processed_img_rgb)
img_bytes = io.BytesIO()
pil_img.save(img_bytes, format='PNG')
st.download_button(
label="Download Image",
data=img_bytes.getvalue(),
file_name="processed_image.png",
mime="image/png"
)
if __name__ == "__main__":
main() |