File size: 3,296 Bytes
20d720d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeee3e3
20d720d
aeee3e3
20d720d
 
005cc1a
20d720d
 
 
 
 
aeee3e3
 
20d720d
 
 
aeee3e3
20d720d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
Mistral Model Wrapper for easy integration
"""
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from typing import Optional
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
class MistralModel:
    """Wrapper for Mistral model with caching and optimization"""
    
    _instance = None
    _model = None
    _tokenizer = None
    
    def __new__(cls):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance
    
    def __init__(self):
        if MistralModel._model is None:
            self._initialize_model()
    
    def _initialize_model(self):
        """Initialize Mistral model with optimizations"""
        print("Loading Mistral model...")
        
        model_id = "mistralai/Mistral-7B-Instruct-v0.2"
        
        # Load tokenizer
        MistralModel._tokenizer = AutoTokenizer.from_pretrained(model_id, token=HUGGINGFACE_TOKEN,use_fast=False)
        
        # Load model with optimizations
        MistralModel._model = AutoModelForCausalLM.from_pretrained(
            model_id,
            token=HUGGINGFACE_TOKEN,
            torch_dtype=torch.float16,
            device_map="auto",
            load_in_8bit=True  # Use 8-bit quantization for memory efficiency
        )
        
        print("Mistral model loaded successfully!")
    
    def generate(
        self, 
        prompt: str, 
        max_length: int = 512,
        temperature: float = 0.7,
        top_p: float = 0.95
    ) -> str:
        """Generate response from Mistral"""
        
        # Format prompt for Mistral instruction format
        formatted_prompt = f"<s>[INST] {prompt} [/INST]"
        
        # Tokenize
        inputs = MistralModel._tokenizer(
            formatted_prompt,
            return_tensors="pt",
            truncation=True,
            max_length=2048
        )
        
        # Move to device
        device = next(MistralModel._model.parameters()).device
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        # Generate
        with torch.no_grad():
            outputs = MistralModel._model.generate(
                **inputs,
                max_new_tokens=max_length,
                temperature=temperature,
                top_p=top_p,
                do_sample=True,
                pad_token_id=MistralModel._tokenizer.eos_token_id
            )
        
        # Decode
        response = MistralModel._tokenizer.decode(
            outputs[0][inputs['input_ids'].shape[1]:],
            skip_special_tokens=True
        )
        
        return response.strip()
    
    def generate_embedding(self, text: str) -> torch.Tensor:
        """Generate embeddings for text"""
        inputs = MistralModel._tokenizer(
            text,
            return_tensors="pt",
            truncation=True,
            max_length=512
        )
        
        device = next(MistralModel._model.parameters()).device
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        with torch.no_grad():
            outputs = MistralModel._model(**inputs, output_hidden_states=True)
            # Use last hidden state as embedding
            embeddings = outputs.hidden_states[-1].mean(dim=1)
        
        return embeddings