File size: 11,160 Bytes
20d720d 4102f9d 20d720d 068c1e8 20d720d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
"""
Configuration management for Personal Coach CrewAI
"""
import os
from dataclasses import dataclass
from typing import Dict, List, Optional
from dotenv import load_dotenv
import torch
# Load environment variables
load_dotenv()
@dataclass
class ModelConfig:
"""Model configuration settings"""
# Mistral model for main LLM
#mistral_model: str = "mistralai/Mistral-7B-Instruct-v0.1"
tinygpt2_model:str = "sshleifer/tiny-gpt2"
# Embedding model for RAG
embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2"
# Whisper model for multilingual STT
whisper_model: str = "openai/whisper-small"
# TTS models for different languages
tts_models: Dict[str, str] = None
# Model parameters
max_length: int = 2048
temperature: float = 0.7
top_p: float = 0.95
do_sample: bool = True
# Device configuration
device: str = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype: torch.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
def __post_init__(self):
if self.tts_models is None:
self.tts_models = {
"en": "microsoft/speecht5_tts",
"hi": "facebook/mms-tts-hin",
"es": "facebook/mms-tts-spa",
"fr": "facebook/mms-tts-fra",
"de": "facebook/mms-tts-deu",
"zh": "facebook/mms-tts-cmn",
"ar": "facebook/mms-tts-ara",
"default": "microsoft/speecht5_tts"
}
@dataclass
class VectorStoreConfig:
"""Vector store configuration for knowledge base"""
index_type: str = "Flat" # FAISS index type
dimension: int = 384 # for all-MiniLM-L6-v2
metric: str = "cosine" # similarity metric
n_results: int = 5 # number of results to retrieve
chunk_size: int = 500 # text chunk size
chunk_overlap: int = 50 # overlap between chunks
@dataclass
class AudioConfig:
"""Audio processing configuration"""
sample_rate: int = 16000
chunk_length: int = 30 # seconds
language_detection: bool = True
supported_languages: List[str] = None
def __post_init__(self):
if self.supported_languages is None:
self.supported_languages = [
"en", "es", "fr", "de", "it", "pt", "ru", "zh",
"ja", "ko", "hi", "ar", "bn", "pa", "te", "mr",
"ta", "ur", "gu", "kn", "ml", "or"
]
@dataclass
class CrewConfig:
"""CrewAI specific configuration"""
max_iterations: int = 3
memory: bool = True
verbose: bool = True
temperature: float = 0.7
max_rpm: int = 10 # rate limiting
# Agent-specific settings
agent_settings: Dict[str, Dict] = None
def __post_init__(self):
if self.agent_settings is None:
self.agent_settings = {
"conversation_handler": {
"max_questions": 3,
"empathy_level": "high",
"response_style": "warm"
},
"knowledge_advisor": {
"search_depth": 5,
"context_window": 3,
"wisdom_sources": ["all"]
},
"response_validator": {
"safety_threshold": 0.9,
"tone_check": True,
"fact_check": False
},
"interaction_manager": {
"voice_speed": 1.0,
"voice_pitch": 1.0,
"include_followup": True
}
}
class Config:
"""Main configuration class"""
def __init__(self):
# Base paths
self.BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
self.DATA_DIR = os.path.join(self.BASE_DIR, "data")
self.BOOKS_DIR = os.path.join(self.DATA_DIR, "books")
self.INDEX_DIR = os.path.join(self.DATA_DIR, "faiss_index")
self.CACHE_DIR = os.path.join(self.BASE_DIR, ".cache")
self.LOGS_DIR = os.path.join(self.BASE_DIR, "logs")
# Create necessary directories
for directory in [self.DATA_DIR, self.BOOKS_DIR, self.INDEX_DIR, self.CACHE_DIR, self.LOGS_DIR]:
os.makedirs(directory, exist_ok=True)
# Model configuration
self.models = ModelConfig(
tinygpt2_model=os.getenv("MISTRAL_MODEL", ModelConfig.tinygpt2_model),
embedding_model=os.getenv("EMBEDDING_MODEL", ModelConfig.embedding_model),
whisper_model=os.getenv("WHISPER_MODEL", ModelConfig.whisper_model),
temperature=float(os.getenv("TEMPERATURE", "0.7")),
max_length=int(os.getenv("MAX_LENGTH", "2048"))
)
# Vector store configuration
self.vector_store = VectorStoreConfig(
chunk_size=int(os.getenv("CHUNK_SIZE", "500")),
n_results=int(os.getenv("N_RESULTS", "5"))
)
# Audio configuration
self.audio = AudioConfig(
sample_rate=int(os.getenv("SAMPLE_RATE", "16000")),
language_detection=os.getenv("LANGUAGE_DETECTION", "true").lower() == "true"
)
# CrewAI configuration
self.crew = CrewConfig(
verbose=os.getenv("CREW_VERBOSE", "true").lower() == "true",
max_iterations=int(os.getenv("MAX_ITERATIONS", "3"))
)
# API tokens
self.tokens = {
"huggingface": os.getenv("HUGGINGFACE_TOKEN", ""),
"openai": os.getenv("OPENAI_API_KEY", "")
}
# Feature flags
self.features = {
"voice_enabled": os.getenv("VOICE_ENABLED", "true").lower() == "true",
"multilingual": os.getenv("MULTILINGUAL", "true").lower() == "true",
"save_history": os.getenv("SAVE_HISTORY", "true").lower() == "true",
"debug_mode": os.getenv("DEBUG_MODE", "false").lower() == "true"
}
# Knowledge base books
self.knowledge_sources = {
"spiritual": [
"Bhagavad Gita",
"Autobiography of a Yogi",
"The Power of Now",
"Tao Te Ching",
"Dhyana Vahini",
"Gita Vahini",
"Prema Vahini",
"Prasnothra Vahini"
],
"self_help": [
"Atomic Habits",
"The 7 Habits of Highly Effective People",
"Man's Search for Meaning",
"Mindset"
],
"philosophy": [
"Meditations"
]
}
# Prompt templates
self.prompts = {
"system_prompt": """You are a compassionate personal coach who draws wisdom from ancient texts and modern psychology.
You listen deeply, ask thoughtful questions, and provide guidance that is both practical and profound.
You speak with warmth and understanding, never judging, always supporting.""",
"conversation_prompt": """Based on what the user shared: {user_input}
Their emotional state appears to be: {emotional_state}
Generate {num_questions} empathetic, reflective questions to help them explore their feelings deeper.""",
"wisdom_prompt": """The user is dealing with: {situation}
Their emotional state: {emotional_state}
Drawing from these wisdom sources: {sources}
Provide relevant guidance that:
1. Acknowledges their feelings
2. Shares applicable wisdom
3. Offers practical steps
4. Maintains a supportive tone""",
"validation_prompt": """Review this response for appropriateness:
{response}
Ensure it:
1. Contains no medical/legal/financial advice
2. Maintains supportive tone
3. Includes practical guidance
4. Avoids absolute statements""",
"meditation_prompt": """Create a {duration} minute meditation practice for someone feeling {emotion}.
Include:
1. Simple setup instructions
2. Step-by-step guidance
3. Focus technique
4. Closing reflection"""
}
# Response guidelines
self.guidelines = {
"tone": ["empathetic", "supportive", "non-judgmental", "encouraging"],
"avoid": ["prescriptive", "absolute", "diagnostic", "dismissive"],
"include": ["validation", "practical steps", "hope", "empowerment"]
}
# Crisis resources
self.crisis_resources = {
"global": {
"name": "International Crisis Lines",
"url": "https://findahelpline.com",
"phone": "Various by country"
},
"us": {
"name": "988 Suicide & Crisis Lifeline",
"phone": "988",
"text": "Text HOME to 741741"
},
"uk": {
"name": "Samaritans",
"phone": "116 123",
"email": "jo@samaritans.org"
},
"india": {
"name": "Vandrevala Foundation",
"phone": "9999666555",
"languages": ["Hindi", "English", "Regional"]
}
}
def get_language_config(self, language_code: str) -> Dict:
"""Get language-specific configuration"""
language_configs = {
"en": {"name": "English", "tts_voice": "en-US-AriaNeural"},
"hi": {"name": "Hindi", "tts_voice": "hi-IN-SwaraNeural"},
"es": {"name": "Spanish", "tts_voice": "es-ES-ElviraNeural"},
"fr": {"name": "French", "tts_voice": "fr-FR-DeniseNeural"},
"de": {"name": "German", "tts_voice": "de-DE-KatjaNeural"},
"zh": {"name": "Chinese", "tts_voice": "zh-CN-XiaoxiaoNeural"},
"ar": {"name": "Arabic", "tts_voice": "ar-SA-ZariyahNeural"}
}
return language_configs.get(language_code, language_configs["en"])
def get_prompt(self, prompt_type: str, **kwargs) -> str:
"""Get formatted prompt with variables"""
prompt_template = self.prompts.get(prompt_type, "")
return prompt_template.format(**kwargs)
def to_dict(self) -> Dict:
"""Convert configuration to dictionary"""
return {
"paths": {
"base": self.BASE_DIR,
"data": self.DATA_DIR,
"books": self.BOOKS_DIR,
"index": self.INDEX_DIR,
"cache": self.CACHE_DIR
},
"models": self.models.__dict__,
"vector_store": self.vector_store.__dict__,
"audio": self.audio.__dict__,
"crew": self.crew.__dict__,
"features": self.features,
"knowledge_sources": self.knowledge_sources
} |