File size: 14,923 Bytes
6855cb4
 
 
 
 
 
 
 
 
 
 
0b7fd0d
ba88389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b7fd0d
ba88389
 
 
 
0b7fd0d
ba88389
0b7fd0d
ba88389
 
0b7fd0d
ba88389
 
0b7fd0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6855cb4
 
 
 
 
 
0b7fd0d
6855cb4
 
ba88389
 
 
 
 
 
 
 
0b7fd0d
 
 
 
 
 
 
 
 
 
 
ba88389
0b7fd0d
ba88389
 
 
0b7fd0d
 
 
 
 
 
 
 
 
 
 
 
 
ba88389
 
 
 
0b7fd0d
ba88389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699fe5f
 
 
 
 
 
 
 
 
 
 
6855cb4
 
 
699fe5f
0b7fd0d
 
699fe5f
 
0b7fd0d
699fe5f
 
0b7fd0d
 
 
 
 
 
 
 
 
 
 
 
699fe5f
 
6855cb4
 
699fe5f
 
 
 
 
 
 
6855cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699fe5f
 
 
d995ec7
 
 
ba88389
 
 
d995ec7
699fe5f
6855cb4
 
 
 
 
 
 
 
 
699fe5f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Utilities to build a RAG system to query information from the
#  gwIAS search pipeline using Langchain

# Thanks to Pablo Villanueva Domingo for sharing his CAMELS template
# https://huggingface.co/spaces/PabloVD/CAMELSDocBot

from langchain import hub
from langchain_chroma import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader, PyPDFLoader
from langchain.schema import Document
import requests
import json
import base64
from bs4 import BeautifulSoup
import re

def github_to_raw(url):
    """Convert GitHub URL to raw content URL"""
    return url.replace("github.com", "raw.githubusercontent.com").replace("/blob/", "/")

def load_github_notebook(url):
    """Load Jupyter notebook from GitHub URL using GitHub API"""
    try:
        # Convert GitHub blob URL to API URL
        if "github.com" in url and "/blob/" in url:
            # Extract owner, repo, branch and path from URL
            parts = url.replace("https://github.com/", "").split("/")
            owner = parts[0]
            repo = parts[1]
            branch = parts[3]  # usually 'main' or 'master'
            path = "/".join(parts[4:])
            
            api_url = f"https://api.github.com/repos/{owner}/{repo}/contents/{path}?ref={branch}"
        else:
            raise ValueError("URL must be a GitHub blob URL")
        
        # Fetch notebook content
        response = requests.get(api_url)
        response.raise_for_status()
        
        content_data = response.json()
        if content_data.get('encoding') == 'base64':
            notebook_content = base64.b64decode(content_data['content']).decode('utf-8')
        else:
            notebook_content = content_data['content']
        
        # Parse notebook JSON
        notebook = json.loads(notebook_content)
        
        docs = []
        cell_count = 0
        
        # Process each cell
        for cell in notebook.get('cells', []):
            cell_count += 1
            cell_type = cell.get('cell_type', 'unknown')
            source = cell.get('source', [])
            
            # Join source lines
            if isinstance(source, list):
                content = ''.join(source)
            else:
                content = str(source)
            
            if content.strip():  # Only add non-empty cells
                metadata = {
                    'source': url,
                    'cell_type': cell_type,
                    'cell_number': cell_count,
                    'name': f"{url} - Cell {cell_count} ({cell_type})"
                }
                
                # Add cell type prefix for better context
                formatted_content = f"[{cell_type.upper()} CELL {cell_count}]\n{content}"
                
                docs.append(Document(page_content=formatted_content, metadata=metadata))
        
        return docs
        
    except Exception as e:
        print(f"Error loading notebook from {url}: {str(e)}")
        return []

def clean_text(text):
    """Clean text content from a webpage"""
    # Remove excessive newlines
    text = re.sub(r'\n{3,}', '\n\n', text)
    # Remove excessive whitespace
    text = re.sub(r'\s{2,}', ' ', text)
    return text.strip()

def clean_github_content(html_content):
    """Extract meaningful content from GitHub pages"""
    # Ensure we're working with a BeautifulSoup object
    if isinstance(html_content, str):
        soup = BeautifulSoup(html_content, 'html.parser')
    else:
        soup = html_content
    
    # Remove navigation, footer, and other boilerplate
    for element in soup.find_all(['nav', 'footer', 'header']):
        element.decompose()
        
    # For README and code files
    readme_content = soup.find('article', class_='markdown-body')
    if readme_content:
        return clean_text(readme_content.get_text())
    
    # For code files
    code_content = soup.find('table', class_='highlight')
    if code_content:
        return clean_text(code_content.get_text())
        
    # For directory listings
    file_list = soup.find('div', role='grid')
    if file_list:
        return clean_text(file_list.get_text())
        
    # Fallback to main content
    main_content = soup.find('main')
    if main_content:
        return clean_text(main_content.get_text())
    
    # If no specific content found, get text from body
    body = soup.find('body')
    if body:
        return clean_text(body.get_text())
        
    # Final fallback
    return clean_text(soup.get_text())

class GitHubLoader(WebBaseLoader):
    """Custom loader for GitHub pages with better content cleaning"""
    
    def clean_text(self, text):
        """Clean text content"""
        # Remove excessive newlines and spaces
        text = re.sub(r'\n{2,}', '\n', text)
        text = re.sub(r'\s{2,}', ' ', text)
        # Remove common GitHub boilerplate
        text = re.sub(r'Skip to content|Sign in|Search or jump to|Footer navigation|Terms|Privacy|Security|Status|Docs', '', text)
        return text.strip()

    def _scrape(self, url: str, *args, **kwargs) -> str:
        response = requests.get(url)
        response.raise_for_status()
        
        # For directory listings (tree URLs), use the API
        if '/tree/' in url:
            parts = url.replace("https://github.com/", "").split("/")
            owner = parts[0]
            repo = parts[1]
            branch = parts[3]  # usually 'main' or 'master'
            path = "/".join(parts[4:]) if len(parts) > 4 else ""
            api_url = f"https://api.github.com/repos/{owner}/{repo}/contents/{path}?ref={branch}"
            api_response = requests.get(api_url)
            api_response.raise_for_status()
            contents = api_response.json()
            if isinstance(contents, list):
                files = [f"{item['name']} ({item['type']})" for item in contents]
                return "Directory contents:\n" + "\n".join(files)
            else:
                return f"Error: Unexpected API response for {url}"
        
        soup = BeautifulSoup(response.text, 'html.parser')
        
        # For README and markdown files
        readme_content = soup.find('article', class_='markdown-body')
        if readme_content and hasattr(readme_content, 'get_text'):
            return self.clean_text(readme_content.get_text())
        
        # For code files
        code_content = soup.find('table', class_='highlight')
        if code_content and hasattr(code_content, 'get_text'):
            return self.clean_text(code_content.get_text())
        
        # For other content, get main content
        main_content = soup.find('main')
        if main_content and hasattr(main_content, 'get_text'):
            return self.clean_text(main_content.get_text())
        
        # Final fallback: get all text from soup
        if hasattr(soup, 'get_text'):
            return self.clean_text(soup.get_text())
        else:
            return self.clean_text(str(soup))

    def load(self):
        docs = []
        for url in self.web_paths:
            text = self._scrape(url)
            docs.append(Document(page_content=text, metadata={"source": url}))
        return docs

class RawContentLoader(WebBaseLoader):
    """Loader for raw content from GitHub (Python files, etc.)"""
    
    def _scrape(self, url: str, *args, **kwargs) -> str:
        response = requests.get(url)
        response.raise_for_status()
        return response.text

    def load(self):
        docs = []
        for url in self.web_paths:
            text = self._scrape(url)
            docs.append(Document(page_content=text, metadata={"source": url}))
        return docs

# Load documentation from urls
def load_docs():
    # Get urls
    urlsfile = open("urls.txt")
    urls = urlsfile.readlines()
    urls = [url.replace("\n","") for url in urls if not url.strip().startswith("#") and url.strip()]
    urlsfile.close()

    # Load documents from URLs
    docs = []
    
    for url in urls:
        url = url.strip()
        if not url:
            continue
            
        # Handle PDF files
        if url.endswith('.pdf'):
            print(f"Loading PDF: {url}")
            try:
                loader = PyPDFLoader(url)
                pdf_docs = loader.load()
                for doc in pdf_docs:
                    doc.metadata['source'] = url
                docs.extend(pdf_docs)
            except Exception as e:
                print(f"Error loading PDF {url}: {str(e)}")
        # Check if URL is a Jupyter notebook
        elif url.endswith('.ipynb') and 'github.com' in url and '/blob/' in url:
            print(f"Loading notebook: {url}")
            notebook_docs = load_github_notebook(url)
            docs.extend(notebook_docs)
        # Handle raw content URLs (already in raw.githubusercontent.com format)
        elif 'raw.githubusercontent.com' in url:
            print(f"Loading raw content: {url}")
            try:
                loader = RawContentLoader([url])
                web_docs = loader.load()
                # Preserve original URL in metadata
                for doc in web_docs:
                    doc.metadata['source'] = url
                docs.extend(web_docs)
            except Exception as e:
                print(f"Error loading {url}: {str(e)}")
        # Handle Python and Markdown files using raw content (convert from blob to raw)
        elif url.endswith(('.py', '.md')) and 'github.com' in url and '/blob/' in url:
            print(f"Loading raw content: {url}")
            try:
                raw_url = github_to_raw(url)
                loader = RawContentLoader([raw_url])
                web_docs = loader.load()
                # Preserve original URL in metadata
                for doc in web_docs:
                    doc.metadata['source'] = url
                docs.extend(web_docs)
            except Exception as e:
                print(f"Error loading {url}: {str(e)}")
        # Handle directory listings
        elif '/tree/' in url and 'github.com' in url:
            print(f"Loading directory: {url}")
            try:
                # Parse URL components
                parts = url.replace("https://github.com/", "").split("/")
                owner = parts[0]
                repo = parts[1]
                branch = parts[3]  # usually 'main' or 'master'
                path = "/".join(parts[4:]) if len(parts) > 4 else ""
                
                # Construct API URL
                api_url = f"https://api.github.com/repos/{owner}/{repo}/contents/{path}?ref={branch}"
                response = requests.get(api_url)
                response.raise_for_status()
                
                # Parse directory listing
                contents = response.json()
                if isinstance(contents, list):
                    # Format directory contents
                    content = "Directory contents:\n" + "\n".join([f"{item['name']} ({item['type']})" for item in contents])
                    docs.append(Document(page_content=content, metadata={'source': url}))
                else:
                    print(f"Error: Unexpected API response for {url}")
            except Exception as e:
                print(f"Error loading directory {url}: {str(e)}")
        else:
            print(f"Loading web page: {url}")
            try:
                loader = GitHubLoader([url])  # Use custom loader
                web_docs = loader.load()
                docs.extend(web_docs)
            except Exception as e:
                print(f"Error loading {url}: {str(e)}")
    
    # Add source URLs as document names for reference
    for i, doc in enumerate(docs):
        if 'source' in doc.metadata:
            doc.metadata['name'] = doc.metadata['source']
        else:
            doc.metadata['name'] = f"Document {i+1}"
    
    print(f"Loaded {len(docs)} documents:")
    for doc in docs:
        print(f" - {doc.metadata.get('name')}")

    return docs

def extract_reference(url):
    """Extract a reference keyword from the URL for display in citations."""
    # Handle GitHub blob URLs
    if "blob/main" in url:
        return url.split("blob/main/")[-1]
    # Handle GitHub tree URLs
    elif "tree/main" in url:
        return url.split("tree/main/")[-1] or "root"
    # Handle raw.githubusercontent.com URLs
    elif "raw.githubusercontent.com" in url:
        # Example: https://raw.githubusercontent.com/user/repo/branch/path/to/file.py
        parts = url.split("raw.githubusercontent.com/")[-1].split("/")
        if len(parts) > 3:
            # Remove user, repo, branch
            return "/".join(parts[3:])
        else:
            return url
    # For arXiv PDFs and other URLs, just use the filename
    elif url.endswith('.pdf') or url.endswith('.ipynb') or url.endswith('.py') or url.endswith('.md'):
        return url.split("/")[-1]
    return url

# Join content pages for processing
def format_docs(docs):
    formatted_docs = []
    for doc in docs:
        source = doc.metadata.get('source', 'Unknown source')
        reference = f"[{extract_reference(source)}]"
        content = doc.page_content
        formatted_docs.append(f"{content}\n\nReference: {reference}")
    return "\n\n---\n\n".join(formatted_docs)

# Create a RAG chain
def RAG(llm, docs, embeddings):

    # Split text
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    splits = text_splitter.split_documents(docs)

    # Create vector store
    vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)

    # Retrieve and generate using the relevant snippets of the documents
    retriever = vectorstore.as_retriever()

    # Prompt basis example for RAG systems
    prompt = hub.pull("rlm/rag-prompt")
    # Adding custom instructions to the prompt
    template = prompt.messages[0].prompt.template
    template_parts = template.split("\nQuestion: {question}")
    combined_template = "You are an assistant for question-answering tasks. "\
        + "Use the following pieces of retrieved context to answer the question. "\
        + "If you don't know the answer, just say that you don't know. "\
        + "Try to keep the answer concise if possible. "\
        + "Write the names of the relevant functions from the retrived code and include code snippets to aid the user's understanding. "\
        + "Include the references used in square brackets at the end of your answer."\
        + template_parts[1]
    prompt.messages[0].prompt.template = combined_template

    # Create the chain
    rag_chain = (
        {"context": retriever | format_docs, "question": RunnablePassthrough()}
        | prompt
        | llm
        | StrOutputParser()
    )

    return rag_chain