Spaces:
Running
Running
File size: 9,682 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import { DataTexture, RepeatWrapping, Vector2, Vector3, TempNode } from 'three/webgpu';
import { texture, getNormalFromDepth, getViewPosition, convertToTexture, nodeObject, Fn, float, NodeUpdateType, uv, uniform, Loop, luminance, vec2, vec3, vec4, uniformArray, int, dot, max, pow, abs, If, textureSize, sin, cos, mat2, PI } from 'three/tsl';
import { SimplexNoise } from '../../math/SimplexNoise.js';
/** @module DenoiseNode **/
/**
* Post processing node for denoising data like raw screen-space ambient occlusion output.
* Denoise can noticeably improve the quality of ambient occlusion but also add quite some
* overhead to the post processing setup. It's best to make its usage optional (e.g. via
* graphic settings).
*
* Reference: {@link https://openaccess.thecvf.com/content/WACV2021/papers/Khademi_Self-Supervised_Poisson-Gaussian_Denoising_WACV_2021_paper.pdf}.
*
* @augments TempNode
*/
class DenoiseNode extends TempNode {
static get type() {
return 'DenoiseNode';
}
/**
* Constructs a new denoise node.
*
* @param {TextureNode} textureNode - The texture node that represents the input of the effect (e.g. AO).
* @param {Node<float>} depthNode - A node that represents the scene's depth.
* @param {Node<vec3>?} normalNode - A node that represents the scene's normals.
* @param {Camera} camera - The camera the scene is rendered with.
*/
constructor( textureNode, depthNode, normalNode, camera ) {
super( 'vec4' );
/**
* The texture node that represents the input of the effect (e.g. AO).
*
* @type {TextureNode}
*/
this.textureNode = textureNode;
/**
* A node that represents the scene's depth.
*
* @type {Node<float>}
*/
this.depthNode = depthNode;
/**
* A node that represents the scene's normals. If no normals are passed to the
* constructor (because MRT is not available), normals can be automatically
* reconstructed from depth values in the shader.
*
* @type {Node<vec3>?}
*/
this.normalNode = normalNode;
/**
* The node represents the internal noise texture.
*
* @type {TextureNode}
*/
this.noiseNode = texture( generateDefaultNoise() );
/**
* The luma Phi value.
*
* @type {UniformNode<float>}
*/
this.lumaPhi = uniform( 5 );
/**
* The depth Phi value.
*
* @type {UniformNode<float>}
*/
this.depthPhi = uniform( 5 );
/**
* The normal Phi value.
*
* @type {UniformNode<float>}
*/
this.normalPhi = uniform( 5 );
/**
* The radius.
*
* @type {UniformNode<float>}
*/
this.radius = uniform( 5 );
/**
* The index.
*
* @type {UniformNode<float>}
*/
this.index = uniform( 0 );
/**
* The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node updates
* its internal uniforms once per frame in `updateBefore()`.
*
* @type {String}
* @default 'frame'
*/
this.updateBeforeType = NodeUpdateType.FRAME;
/**
* The resolution of the effect.
*
* @private
* @type {UniformNode<vec2>}
*/
this._resolution = uniform( new Vector2() );
/**
* An array of sample vectors.
*
* @private
* @type {UniformArrayNode<vec3>}
*/
this._sampleVectors = uniformArray( generateDenoiseSamples( 16, 2, 1 ) );
/**
* Represents the inverse projection matrix of the scene's camera.
*
* @private
* @type {UniformNode<mat4>}
*/
this._cameraProjectionMatrixInverse = uniform( camera.projectionMatrixInverse );
}
/**
* This method is used to update internal uniforms once per frame.
*
* @param {NodeFrame} frame - The current node frame.
*/
updateBefore() {
const map = this.textureNode.value;
this._resolution.value.set( map.image.width, map.image.height );
}
/**
* This method is used to setup the effect's TSL code.
*
* @param {NodeBuilder} builder - The current node builder.
* @return {ShaderCallNodeInternal}
*/
setup( /* builder */ ) {
const uvNode = uv();
const sampleTexture = ( uv ) => this.textureNode.sample( uv );
const sampleDepth = ( uv ) => this.depthNode.sample( uv ).x;
const sampleNormal = ( uv ) => ( this.normalNode !== null ) ? this.normalNode.sample( uv ).rgb.normalize() : getNormalFromDepth( uv, this.depthNode.value, this._cameraProjectionMatrixInverse );
const sampleNoise = ( uv ) => this.noiseNode.sample( uv );
const denoiseSample = Fn( ( [ center, viewNormal, viewPosition, sampleUv ] ) => {
const texel = sampleTexture( sampleUv ).toVar();
const depth = sampleDepth( sampleUv ).toVar();
const normal = sampleNormal( sampleUv ).toVar();
const neighborColor = texel.rgb;
const viewPos = getViewPosition( sampleUv, depth, this._cameraProjectionMatrixInverse ).toVar();
const normalDiff = dot( viewNormal, normal ).toVar();
const normalSimilarity = pow( max( normalDiff, 0 ), this.normalPhi ).toVar();
const lumaDiff = abs( luminance( neighborColor ).sub( luminance( center ) ) ).toVar();
const lumaSimilarity = max( float( 1.0 ).sub( lumaDiff.div( this.lumaPhi ) ), 0 ).toVar();
const depthDiff = abs( dot( viewPosition.sub( viewPos ), viewNormal ) ).toVar();
const depthSimilarity = max( float( 1.0 ).sub( depthDiff.div( this.depthPhi ) ), 0 );
const w = lumaSimilarity.mul( depthSimilarity ).mul( normalSimilarity );
return vec4( neighborColor.mul( w ), w );
} );
const denoise = Fn( ( [ uvNode ] ) => {
const depth = sampleDepth( uvNode ).toVar();
const viewNormal = sampleNormal( uvNode ).toVar();
const texel = sampleTexture( uvNode ).toVar();
If( depth.greaterThanEqual( 1.0 ).or( dot( viewNormal, viewNormal ).equal( 0.0 ) ), () => {
return texel;
} );
const center = vec3( texel.rgb ).toVar();
const viewPosition = getViewPosition( uvNode, depth, this._cameraProjectionMatrixInverse ).toVar();
const noiseResolution = textureSize( this.noiseNode, 0 );
let noiseUv = vec2( uvNode.x, uvNode.y.oneMinus() );
noiseUv = noiseUv.mul( this._resolution.div( noiseResolution ) );
const noiseTexel = sampleNoise( noiseUv ).toVar();
const x = sin( noiseTexel.element( this.index.mod( 4 ).mul( 2 ).mul( PI ) ) ).toVar();
const y = cos( noiseTexel.element( this.index.mod( 4 ).mul( 2 ).mul( PI ) ) ).toVar();
const noiseVec = vec2( x, y ).toVar();
const rotationMatrix = mat2( noiseVec.x, noiseVec.y.negate(), noiseVec.x, noiseVec.y ).toVar();
const totalWeight = float( 1.0 ).toVar();
const denoised = vec3( texel.rgb ).toVar();
Loop( { start: int( 0 ), end: int( 16 ), type: 'int', condition: '<' }, ( { i } ) => {
const sampleDir = this._sampleVectors.element( i ).toVar();
const offset = rotationMatrix.mul( sampleDir.xy.mul( float( 1.0 ).add( sampleDir.z.mul( this.radius.sub( 1 ) ) ) ) ).div( this._resolution ).toVar();
const sampleUv = uvNode.add( offset ).toVar();
const result = denoiseSample( center, viewNormal, viewPosition, sampleUv );
denoised.addAssign( result.xyz );
totalWeight.addAssign( result.w );
} );
If( totalWeight.greaterThan( float( 0 ) ), () => {
denoised.divAssign( totalWeight );
} );
return vec4( denoised, texel.a );
} ).setLayout( {
name: 'denoise',
type: 'vec4',
inputs: [
{ name: 'uv', type: 'vec2' }
]
} );
const output = Fn( () => {
return denoise( uvNode );
} );
const outputNode = output();
return outputNode;
}
}
export default DenoiseNode;
/**
* Generates denoise samples based on the given parameters.
*
* @param {Number} numSamples - The number of samples.
* @param {Number} numRings - The number of rings.
* @param {Number} radiusExponent - The radius exponent.
* @return {Array<Vector3>} The denoise samples.
*/
function generateDenoiseSamples( numSamples, numRings, radiusExponent ) {
const samples = [];
for ( let i = 0; i < numSamples; i ++ ) {
const angle = 2 * Math.PI * numRings * i / numSamples;
const radius = Math.pow( i / ( numSamples - 1 ), radiusExponent );
samples.push( new Vector3( Math.cos( angle ), Math.sin( angle ), radius ) );
}
return samples;
}
/**
* Generates a default noise texture for the given size.
*
* @param {Number} [size=64] - The texture size.
* @return {DataTexture} The generated noise texture.
*/
function generateDefaultNoise( size = 64 ) {
const simplex = new SimplexNoise();
const arraySize = size * size * 4;
const data = new Uint8Array( arraySize );
for ( let i = 0; i < size; i ++ ) {
for ( let j = 0; j < size; j ++ ) {
const x = i;
const y = j;
data[ ( i * size + j ) * 4 ] = ( simplex.noise( x, y ) * 0.5 + 0.5 ) * 255;
data[ ( i * size + j ) * 4 + 1 ] = ( simplex.noise( x + size, y ) * 0.5 + 0.5 ) * 255;
data[ ( i * size + j ) * 4 + 2 ] = ( simplex.noise( x, y + size ) * 0.5 + 0.5 ) * 255;
data[ ( i * size + j ) * 4 + 3 ] = ( simplex.noise( x + size, y + size ) * 0.5 + 0.5 ) * 255;
}
}
const noiseTexture = new DataTexture( data, size, size );
noiseTexture.wrapS = RepeatWrapping;
noiseTexture.wrapT = RepeatWrapping;
noiseTexture.needsUpdate = true;
return noiseTexture;
}
/**
* TSL function for creating a denoise effect.
*
* @function
* @param {Node} node - The node that represents the input of the effect (e.g. AO).
* @param {Node<float>} depthNode - A node that represents the scene's depth.
* @param {Node<vec3>?} normalNode - A node that represents the scene's normals.
* @param {Camera} camera - The camera the scene is rendered with.
* @returns {DenoiseNode}
*/
export const denoise = ( node, depthNode, normalNode, camera ) => nodeObject( new DenoiseNode( convertToTexture( node ), nodeObject( depthNode ), nodeObject( normalNode ), camera ) );
|