File size: 67,845 Bytes
a28eca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
import { HalfFloatType, LinearFilter, NearestFilter, RenderTarget, Texture, Vector2, QuadMesh, NodeMaterial, TempNode, RendererUtils } from 'three/webgpu';
import { abs, nodeObject, Fn, NodeUpdateType, uv, uniform, convertToTexture, varyingProperty, vec2, vec4, modelViewProjection, passTexture, max, step, dot, float, texture, If, Loop, int, Break, sqrt, sign, mix } from 'three/tsl';

/** @module SMAANode **/

const _quadMesh = /*@__PURE__*/ new QuadMesh();
const _size = /*@__PURE__*/ new Vector2();

let _rendererState;

/**
 * Post processing node for applying SMAA. Unlike FXAA, this node
 * should be applied before converting colors to sRGB. SMAA should produce
 * better results than FXAA but is also more expensive to execute.
 *
 * Used Preset: SMAA 1x Medium (with color edge detection)
 * Reference: {@link https://github.com/iryoku/smaa/releases/tag/v2.8}.
 *
 * @augments TempNode
 */
class SMAANode extends TempNode {

	static get type() {

		return 'SMAANode';

	}

	/**
	 * Constructs a new SMAA node.
	 *
	 * @param {TextureNode} textureNode - The texture node that represents the input of the effect.
	 */
	constructor( textureNode ) {

		super( 'vec4' );

		/**
		 * The texture node that represents the input of the effect.
		 *
		 * @type {TextureNode}
		 */
		this.textureNode = textureNode;

		/**
		 * The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node renders
		 * its effect once per frame in `updateBefore()`.
		 *
		 * @type {String}
		 * @default 'frame'
		 */
		this.updateBeforeType = NodeUpdateType.FRAME;

		/**
		 * The render target used for the edges pass.
		 *
		 * @private
		 * @type {RenderTarget}
		 */
		this._renderTargetEdges = new RenderTarget( 1, 1, { depthBuffer: false, type: HalfFloatType } );
		this._renderTargetEdges.texture.name = 'SMAANode.edges';

		/**
		 * The render target used for the weights pass.
		 *
		 * @private
		 * @type {RenderTarget}
		 */
		this._renderTargetWeights = new RenderTarget( 1, 1, { depthBuffer: false, type: HalfFloatType } );
		this._renderTargetWeights.texture.name = 'SMAANode.weights';

		/**
		 * The render target used for the blend pass.
		 *
		 * @private
		 * @type {RenderTarget}
		 */
		this._renderTargetBlend = new RenderTarget( 1, 1, { depthBuffer: false, type: HalfFloatType } );
		this._renderTargetBlend.texture.name = 'SMAANode.blend';

		// textures

		const scope = this;

		const areaTextureImage = new Image();
		areaTextureImage.src = this._getAreaTexture();
		areaTextureImage.onload = function () {

			// assigning data to HTMLImageElement.src is asynchronous (see #15162)
			scope._areaTexture.needsUpdate = true;

		};

		/**
		 * Represents the "area" texture used by the SMAA implementation.
		 *
		 * @private
		 * @type {RenderTarget}
		 */
		this._areaTexture = new Texture();
		this._areaTexture.name = 'SMAANode.area';
		this._areaTexture.image = areaTextureImage;
		this._areaTexture.minFilter = LinearFilter;
		this._areaTexture.generateMipmaps = false;
		this._areaTexture.flipY = false;

		const searchTextureImage = new Image();
		searchTextureImage.src = this._getSearchTexture();
		searchTextureImage.onload = function () {

			// assigning data to HTMLImageElement.src is asynchronous (see #15162)
			scope._searchTexture.needsUpdate = true;

		};

		/**
		 * Represents the "search" texture used by the SMAA implementation.
		 *
		 * @private
		 * @type {RenderTarget}
		 */
		this._searchTexture = new Texture();
		this._searchTexture.name = 'SMAANode.search';
		this._searchTexture.image = searchTextureImage;
		this._searchTexture.magFilter = NearestFilter;
		this._searchTexture.minFilter = NearestFilter;
		this._searchTexture.generateMipmaps = false;
		this._searchTexture.flipY = false;

		/**
		 * A uniform node holding the inverse resolution value.
		 *
		 * @private
		 * @type {UniformNode<vec2>}
		 */
		this._invSize = uniform( new Vector2() );

		/**
		 * A uniform texture node holding the area texture.
		 *
		 * @private
		 * @type {TextureNode}
		 */
		this._areaTextureUniform = texture( this._areaTexture );

		/**
		 * A uniform texture node holding the search texture.
		 *
		 * @private
		 * @type {TextureNode}
		 */
		this._searchTextureUniform = texture( this._searchTexture );

		/**
		 * A uniform texture node representing the edges pass.
		 *
		 * @private
		 * @type {TextureNode}
		 */
		this._edgesTextureUniform = texture( this._renderTargetEdges.texture );

		/**
		 * A uniform texture node representing the weights pass.
		 *
		 * @private
		 * @type {TextureNode}
		 */
		this._weightsTextureUniform = texture( this._renderTargetWeights.texture );

		/**
		 * The node material that holds the TSL for rendering the edges pass.
		 *
		 * @private
		 * @type {NodeMaterial}
		 */
		this._materialEdges = new NodeMaterial();
		this._materialEdges.name = 'SMAANode.edges';

		/**
		 * The node material that holds the TSL for rendering the weights pass.
		 *
		 * @private
		 * @type {NodeMaterial}
		 */
		this._materialWeights = new NodeMaterial();
		this._materialWeights.name = 'SMAANode.weights';

		/**
		 * The node material that holds the TSL for rendering the blend pass.
		 *
		 * @private
		 * @type {NodeMaterial}
		 */
		this._materialBlend = new NodeMaterial();
		this._materialBlend.name = 'SMAANode.blend';

		/**
		 * The result of the effect is represented as a separate texture node.
		 *
		 * @private
		 * @type {PassTextureNode}
		 */
		this._textureNode = passTexture( this, this._renderTargetBlend.texture );

	}

	/**
	 * Returns the result of the effect as a texture node.
	 *
	 * @return {PassTextureNode} A texture node that represents the result of the effect.
	 */
	getTextureNode() {

		return this._textureNode;

	}

	/**
	 * Sets the size of the effect.
	 *
	 * @param {Number} width - The width of the effect.
	 * @param {Number} height - The height of the effect.
	 */
	setSize( width, height ) {

		this._invSize.value.set( 1 / width, 1 / height );

		this._renderTargetEdges.setSize( width, height );
		this._renderTargetWeights.setSize( width, height );
		this._renderTargetBlend.setSize( width, height );

	}

	/**
	 * This method is used to render the effect once per frame.
	 *
	 * @param {NodeFrame} frame - The current node frame.
	 */
	updateBefore( frame ) {

		const { renderer } = frame;

		_rendererState = RendererUtils.resetRendererState( renderer, _rendererState );

		//

		const size = renderer.getDrawingBufferSize( _size );
		this.setSize( size.width, size.height );

		// edges

		renderer.setRenderTarget( this._renderTargetEdges );

		_quadMesh.material = this._materialEdges;
		_quadMesh.render( renderer );

		// weights

		renderer.setRenderTarget( this._renderTargetWeights );

		_quadMesh.material = this._materialWeights;
		_quadMesh.render( renderer );

		// blend

		renderer.setRenderTarget( this._renderTargetBlend );

		_quadMesh.material = this._materialBlend;
		_quadMesh.render( renderer );

		// restore

		RendererUtils.restoreRendererState( renderer, _rendererState );

	}

	/**
	 * This method is used to setup the effect's TSL code.
	 *
	 * @param {NodeBuilder} builder - The current node builder.
	 * @return {PassTextureNode}
	 */
	setup( builder ) {

		const SMAA_THRESHOLD = 0.1;
		const SMAA_MAX_SEARCH_STEPS = 8;
		const SMAA_AREATEX_MAX_DISTANCE = 16;
		const SMAA_AREATEX_PIXEL_SIZE = vec2( 1 / 160, 1 / 560 );
		const SMAA_AREATEX_SUBTEX_SIZE = ( 1 / 7 );

		const textureNode = this.textureNode;
		const uvNode = textureNode.uvNode || uv();

		// edges

		const SMAAEdgeDetectionVS = Fn( () => {

			const vOffset0 = vec4( uvNode.xy, uvNode.xy ).add( vec4( this._invSize.xy, this._invSize.xy ).mul( vec4( - 1.0, 0.0, 0.0, - 1.0 ) ) );
			const vOffset1 = vec4( uvNode.xy, uvNode.xy ).add( vec4( this._invSize.xy, this._invSize.xy ).mul( vec4( 1.0, 0.0, 0.0, 1.0 ) ) );
			const vOffset2 = vec4( uvNode.xy, uvNode.xy ).add( vec4( this._invSize.xy, this._invSize.xy ).mul( vec4( - 2.0, 0.0, 0.0, - 2.0 ) ) );

			varyingProperty( 'vec4', 'vOffset0' ).assign( vOffset0 );
			varyingProperty( 'vec4', 'vOffset1' ).assign( vOffset1 );
			varyingProperty( 'vec4', 'vOffset2' ).assign( vOffset2 );

			return modelViewProjection;

		} );

		const SMAAEdgeDetectionFS = Fn( () => {

			const vOffset0 = varyingProperty( 'vec4', 'vOffset0' );
			const vOffset1 = varyingProperty( 'vec4', 'vOffset1' );
			const vOffset2 = varyingProperty( 'vec4', 'vOffset2' );

			const threshold = vec2( SMAA_THRESHOLD, SMAA_THRESHOLD );

			// Calculate color deltas:
			const delta = vec4().toVar();
			const C = this.textureNode.sample( uvNode ).rgb.toVar();

			// Calculate left and top deltas:
			const Cleft = this.textureNode.sample( vOffset0.xy ).rgb.toVar();
			let t = abs( C.sub( Cleft ) );
			delta.x = max( max( t.r, t.g ), t.b );

			const Ctop = this.textureNode.sample( vOffset0.zw ).rgb.toVar();
			t = abs( C.sub( Ctop ) );
			delta.y = max( max( t.r, t.g ), t.b );

			// We do the usual threshold:
			const edges = step( threshold, delta.xy ).toVar();

			// Then discard if there is no edge:
			dot( edges, vec2( 1.0, 1.0 ) ).equal( 0 ).discard();

			// Calculate right and bottom deltas:
			const Cright = this.textureNode.sample( vOffset1.xy ).rgb.toVar();
			t = abs( C.sub( Cright ) );
			delta.z = max( max( t.r, t.g ), t.b );

			const Cbottom = this.textureNode.sample( vOffset1.zw ).rgb.toVar();
			t = abs( C.sub( Cbottom ) );
			delta.w = max( max( t.r, t.g ), t.b );

			// Calculate the maximum delta in the direct neighborhood:
			let maxDelta = max( max( max( delta.x, delta.y ), delta.z ), delta.w ).toVar();

			// Calculate left-left and top-top deltas:
			const Cleftleft = this.textureNode.sample( vOffset2.xy ).rgb.toVar();
			t = abs( C.sub( Cleftleft ) );
			delta.z = max( max( t.r, t.g ), t.b );

			const Ctoptop = this.textureNode.sample( vOffset2.zw ).rgb.toVar();
			t = abs( C.sub( Ctoptop ) );
			delta.w = max( max( t.r, t.g ), t.b );

			// Calculate the final maximum delta:
			maxDelta = max( max( maxDelta, delta.z ), delta.w );

			// Local contrast adaptation in action:
			edges.xy.mulAssign( vec2( step( float( 0.5 ).mul( maxDelta ), delta.xy ) ) );

			return vec4( edges, 0, 0 );

		} );

		// weights

		const SMAASearchLength = Fn( ( [ searchTex, e, bias, scale ] ) => {

			// Not required if searchTex accesses are set to point:
			// float2 SEARCH_TEX_PIXEL_SIZE = 1.0 / float2(66.0, 33.0);
			// e = float2(bias, 0.0) + 0.5 * SEARCH_TEX_PIXEL_SIZE + e * float2(scale, 1.0) * float2(64.0, 32.0) * SEARCH_TEX_PIXEL_SIZE;
			const coord = vec2( e ).toVar();
			coord.r = bias.add( coord.r.mul( scale ) );
			return float( 255 ).mul( searchTex.sample( coord ) ).r;

		} );

		const SMAAArea = Fn( ( [ areaTex, dist, e1, e2, offset ] ) => {

			// Rounding prevents precision errors of bilinear filtering:
			let texcoord = float( SMAA_AREATEX_MAX_DISTANCE ).mul( float( 4 ).mul( vec2( e1, e2 ) ).round() ).add( dist );

			// We do a scale and bias for mapping to texel space:
			texcoord = SMAA_AREATEX_PIXEL_SIZE.mul( texcoord ).add( float( 0.5 ).mul( SMAA_AREATEX_PIXEL_SIZE ) );

			// Move to proper place, according to the subpixel offset:
			texcoord.y.addAssign( float( SMAA_AREATEX_SUBTEX_SIZE ).mul( offset ) );

			return areaTex.sample( texcoord ).rg;

		} );

		const SMAASearchXLeft = Fn( ( [ edgesTex, searchTex, texcoord, end ] ) => {

			/**
			* @PSEUDO_GATHER4
			* This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
			* sample between edge, thus fetching four edges in a row.
			* Sampling with different offsets in each direction allows to disambiguate
			* which edges are active from the four fetched ones.
			*/

			const e = vec2( 0.0, 1.0 ).toVar();
			const coord = vec2( texcoord ).toVar();

			Loop( { start: int( 0 ), end: int( SMAA_MAX_SEARCH_STEPS ), type: 'int', condition: '<' }, () => { // port note: Changed while to for

				e.assign( edgesTex.sample( coord ).rg );
				coord.subAssign( vec2( 2, 0 ).mul( this._invSize ) );

				If( coord.x.lessThanEqual( end ).or( e.g.lessThanEqual( float( 0.8281 ) ).or( e.r.notEqual( float( 0 ) ) ) ), () => {

					Break();

				} );

			} );

			// We correct the previous (-0.25, -0.125) offset we applied:
			coord.x.addAssign( float( 0.25 ).mul( this._invSize.x ) );

			// The searches are bias by 1, so adjust the coords accordingly:
			coord.x.addAssign( this._invSize.x );

			// Disambiguate the length added by the last step:
			coord.x.addAssign( float( 2 ).mul( this._invSize.x ) );
			coord.x.subAssign( this._invSize.x.mul( SMAASearchLength( searchTex, e, 0, 0.5 ) ) );

			return coord.x;

		} );

		const SMAASearchXRight = Fn( ( [ edgesTex, searchTex, texcoord, end ] ) => {

			const e = vec2( 0.0, 1.0 ).toVar();
			const coord = vec2( texcoord ).toVar();

			Loop( { start: int( 0 ), end: int( SMAA_MAX_SEARCH_STEPS ), type: 'int', condition: '<' }, () => { // port note: Changed while to for

				e.assign( edgesTex.sample( coord ).rg );
				coord.addAssign( vec2( 2, 0 ).mul( this._invSize ) );

				If( coord.x.greaterThanEqual( end ).or( e.g.lessThanEqual( float( 0.8281 ) ).or( e.r.notEqual( float( 0 ) ) ) ), () => {

					Break();

				} );

			} );

			coord.x.subAssign( float( 0.25 ).mul( this._invSize.x ) );
			coord.x.subAssign( this._invSize.x );
			coord.x.subAssign( float( 2 ).mul( this._invSize.x ) );
			coord.x.addAssign( this._invSize.x.mul( SMAASearchLength( searchTex, e, 0.5, 0.5 ) ) );

			return coord.x;

		} );

		const SMAASearchYUp = Fn( ( [ edgesTex, searchTex, texcoord, end ] ) => {

			const e = vec2( 1.0, 0.0 ).toVar();
			const coord = vec2( texcoord ).toVar();

			Loop( { start: int( 0 ), end: int( SMAA_MAX_SEARCH_STEPS ), type: 'int', condition: '<' }, () => { // port note: Changed while to for

				e.assign( edgesTex.sample( coord ).rg );
				coord.addAssign( vec2( 0, - 2 ).mul( this._invSize ) );

				If( coord.y.lessThanEqual( end ).or( e.r.lessThanEqual( float( 0.8281 ) ).or( e.g.notEqual( float( 0 ) ) ) ), () => {

					Break();

				} );

			} );

			coord.y.addAssign( float( 0.25 ).mul( this._invSize.y ) );
			coord.y.addAssign( this._invSize.y );
			coord.y.addAssign( float( 2 ).mul( this._invSize.y ) );
			coord.y.subAssign( this._invSize.y.mul( SMAASearchLength( searchTex, e.gr, 0, 0.5 ) ) );

			return coord.y;

		} );

		const SMAASearchYDown = Fn( ( [ edgesTex, searchTex, texcoord, end ] ) => {

			const e = vec2( 1.0, 0.0 ).toVar();
			const coord = vec2( texcoord ).toVar();

			Loop( { start: int( 0 ), end: int( SMAA_MAX_SEARCH_STEPS ), type: 'int', condition: '<' }, () => { // port note: Changed while to for

				e.assign( edgesTex.sample( coord ).rg );
				coord.subAssign( vec2( 0, - 2 ).mul( this._invSize ) );

				If( coord.y.greaterThanEqual( end ).or( e.r.lessThanEqual( float( 0.8281 ) ).or( e.g.notEqual( float( 0 ) ) ) ), () => {

					Break();

				} );

			} );

			coord.y.subAssign( float( 0.25 ).mul( this._invSize.y ) );
			coord.y.subAssign( this._invSize.y );
			coord.y.subAssign( float( 2 ).mul( this._invSize.y ) );
			coord.y.addAssign( this._invSize.y.mul( SMAASearchLength( searchTex, e.gr, 0.5, 0.5 ) ) );

			return coord.y;

		} );

		const SMAAWeightsVS = Fn( () => {

			const vPixcoord = uvNode.xy.div( this._invSize );

			// We will use these offsets for the searches later on (see @PSEUDO_GATHER4):
			const vOffset0 = vec4( uvNode.xy, uvNode.xy ).add( vec4( this._invSize.xy, this._invSize.xy ).mul( vec4( - 0.25, - 0.125, 1.25, - 0.125 ) ) ).toVar();
			const vOffset1 = vec4( uvNode.xy, uvNode.xy ).add( vec4( this._invSize.xy, this._invSize.xy ).mul( vec4( - 0.125, - 0.25, - 0.125, 1.25 ) ) ).toVar();

			// And these for the searches, they indicate the ends of the loops:
			const vOffset2 = vec4( vOffset0.xz, vOffset1.yw ).add( vec4( - 2.0, 2.0, - 2.0, 2.0 ).mul( vec4( this._invSize.xx, this._invSize.yy ) ).mul( float( SMAA_MAX_SEARCH_STEPS ) ) ).toVar();

			varyingProperty( 'vec2', 'vPixcoord' ).assign( vPixcoord );
			varyingProperty( 'vec4', 'vOffset0' ).assign( vOffset0 );
			varyingProperty( 'vec4', 'vOffset1' ).assign( vOffset1 );
			varyingProperty( 'vec4', 'vOffset2' ).assign( vOffset2 );

			return modelViewProjection;

		} );

		const SMAAWeightsFS = Fn( () => {

			const vPixcoord = varyingProperty( 'vec2', 'vPixcoord' );
			const vOffset0 = varyingProperty( 'vec4', 'vOffset0' );
			const vOffset1 = varyingProperty( 'vec4', 'vOffset1' );
			const vOffset2 = varyingProperty( 'vec4', 'vOffset2' );

			const weights = vec4( 0.0, 0.0, 0.0, 0.0 ).toVar();
			const subsampleIndices = vec4( 0.0, 0.0, 0.0, 0.0 ).toVar();

			const e = this._edgesTextureUniform.sample( uvNode ).rg.toVar();

			If( e.g.greaterThan( float( 0 ) ), () => { // Edge at north

				let d = vec2().toVar();

				// Find the distance to the left:

				const coordsLeft = vec2().toVar();
				coordsLeft.x = SMAASearchXLeft( this._edgesTextureUniform, this._searchTextureUniform, vOffset0.xy, vOffset2.x );
				coordsLeft.y = vOffset1.y; // offset[1].y = texcoord.y - 0.25 * resolution.y (@CROSSING_OFFSET)
				d.x = coordsLeft.x;

				// Now fetch the left crossing edges, two at a time using bilinear
				// filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
				// discern what value each edge has:
				const e1 = this._edgesTextureUniform.sample( coordsLeft ).r.toVar();

				// Find the distance to the right:
				const coordsRight = vec2().toVar();
				coordsRight.x = SMAASearchXRight( this._edgesTextureUniform, this._searchTextureUniform, vOffset0.zw, vOffset2.y );
				coordsRight.y = vOffset1.y;
				d.y = coordsRight.x;

				// We want the distances to be in pixel units (doing this here allow to
				// better interleave arithmetic and memory accesses):
				d = d.div( this._invSize.x ).sub( vPixcoord.x );

				// SMAAArea below needs a sqrt, as the areas texture is compressed quadratically:
				const sqrt_d = sqrt( abs( d ) );

				// Fetch the right crossing edges:
				const e2 = this._edgesTextureUniform.sample( coordsRight.add( vec2( 1, 0 ).mul( this._invSize ) ) ).r.toVar();
				weights.r = e2;

				// Get the area for this direction:
				weights.rg = SMAAArea( this._areaTextureUniform, sqrt_d, e1, e2, float( subsampleIndices.y ) );

			} );

			If( e.r.greaterThan( float( 0 ) ), () => { // Edge at west

				let d = vec2().toVar();

				// Find the distance to the top:

				const coordsUp = vec2().toVar();
				coordsUp.y = SMAASearchYUp( this._edgesTextureUniform, this._searchTextureUniform, vOffset1.xy, vOffset2.z );
				coordsUp.x = vOffset0.x; // offset[1].x = texcoord.x - 0.25 * resolution.x;
				d.x = coordsUp.y;

				// Fetch the top crossing edges:
				const e1 = this._edgesTextureUniform.sample( coordsUp ).g.toVar();

				// Find the distance to the bottom:
				const coordsDown = vec2().toVar();
				coordsDown.y = SMAASearchYDown( this._edgesTextureUniform, this._searchTextureUniform, vOffset1.zw, vOffset2.w );
				coordsDown.x = vOffset0.x;
				d.y = coordsDown.y;

				// We want the distances to be in pixel units:
				d = d.div( this._invSize.y ).sub( vPixcoord.y );

				// SMAAArea below needs a sqrt, as the areas texture is compressed quadratically:
				const sqrt_d = sqrt( abs( d ) );

				// Fetch the bottom crossing edges:
				const e2 = this._edgesTextureUniform.sample( coordsDown.add( vec2( 0, 1 ).mul( this._invSize ) ) ).g.toVar();

				// Get the area for this direction:
				weights.ba = SMAAArea( this._areaTextureUniform, sqrt_d, e1, e2, float( subsampleIndices.x ) );

			} );

			return weights;

		} );

		// blend

		const SMAABlendVS = Fn( () => {

			//const vOffset0 = vec4( uvNode.xy, uvNode.xy ).add( vec4( this._invSize.xy, this._invSize.xy ).mul( vec4( - 1.0, 0.0, 0.0, - 1.0 ) ) );
			const vOffset1 = vec4( uvNode.xy, uvNode.xy ).add( vec4( this._invSize.xy, this._invSize.xy ).mul( vec4( 1.0, 0.0, 0.0, 1.0 ) ) );

			//varyingProperty( 'vec4', 'vOffset0' ).assign( vOffset0 );
			varyingProperty( 'vec4', 'vOffset1' ).assign( vOffset1 );

			return modelViewProjection;

		} );

		const SMAABlendFS = Fn( () => {

			//const vOffset0 = varyingProperty( 'vec4', 'vOffset0' );
			const vOffset1 = varyingProperty( 'vec4', 'vOffset1' );
			const result = vec4().toVar();

			// Fetch the blending weights for current pixel:

			const a = vec4().toVar();
			a.xz = this._weightsTextureUniform.sample( uvNode ).xz;
			a.y = this._weightsTextureUniform.sample( vOffset1.zw ).g;
			a.w = this._weightsTextureUniform.sample( vOffset1.xy ).a;

			// Is there any blending weight with a value greater than 0.0?

			If( dot( a, vec4( 1.0 ) ).lessThan( 1e-5 ), () => { // Edge at north

				result.assign( this.textureNode.sample( uvNode ) );

			} ).Else( () => {

				// Up to 4 lines can be crossing a pixel (one through each edge). We
				// favor blending by choosing the line with the maximum weight for each
				// direction:

				const offset = vec2().toVar();

				offset.x = a.a.greaterThan( a.b ).select( a.a, a.b.negate() ); // left vs. right
				offset.y = a.g.greaterThan( a.r ).select( a.g, a.r.negate() ); // top vs. bottom

				// Then we go in the direction that has the maximum weight:

				If( abs( offset.x ).greaterThan( abs( offset.y ) ), () => { // horizontal vs. vertical

					offset.y.assign( 0 );

				} ).Else( () => {

					offset.x.assign( 0 );

				} );

				// Fetch the opposite color and lerp by hand:

				const C = this.textureNode.sample( uvNode ).toVar();
				const texcoord = vec2( uvNode ).toVar();
				texcoord.addAssign( sign( offset ).mul( this._invSize ) );
				const Cop = this.textureNode.sample( texcoord ).toVar();
				const s = abs( offset.x ).greaterThan( abs( offset.y ) ).select( abs( offset.x ), abs( offset.y ) ).toVar();

				const mixed = mix( C, Cop, s );
				result.assign( mixed );

			 } );

			 return result;

		} );

		this._materialEdges.vertexNode = SMAAEdgeDetectionVS().context( builder.getSharedContext() );
		this._materialEdges.fragmentNode = SMAAEdgeDetectionFS().context( builder.getSharedContext() );
		this._materialEdges.needsUpdate = true;

		this._materialWeights.vertexNode = SMAAWeightsVS().context( builder.getSharedContext() );
		this._materialWeights.fragmentNode = SMAAWeightsFS().context( builder.getSharedContext() );
		this._materialWeights.needsUpdate = true;

		this._materialBlend.vertexNode = SMAABlendVS().context( builder.getSharedContext() );
		this._materialBlend.fragmentNode = SMAABlendFS().context( builder.getSharedContext() );
		this._materialBlend.needsUpdate = true;

		return this._textureNode;

	}

	/**
	 * Frees internal resources. This method should be called
	 * when the effect is no longer required.
	 */
	dispose() {

		this._renderTargetEdges.dispose();
		this._renderTargetWeights.dispose();
		this._renderTargetBlend.dispose();

		this._areaTexture.dispose();
		this._searchTexture.dispose();

		this._materialEdges.dispose();
		this._materialWeights.dispose();
		this._materialBlend.dispose();

	}

	/**
	 * Returns the area texture as a Base64 string.
	 *
	 * @private
	 * @return {String} The area texture.
	 */
	_getAreaTexture() {

		return '';

	}

	/**
	 * Returns the search texture as a Base64 string..
	 *
	 * @private
	 * @return {String} The search texture.
	 */
	_getSearchTexture() {

		return '';

	}

}

export default SMAANode;

export const smaa = ( node ) => nodeObject( new SMAANode( convertToTexture( node ) ) );