Spaces:
Running
Running
File size: 16,749 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import { NearestFilter, RenderTarget, Vector2, RendererUtils, QuadMesh, TempNode, NodeMaterial, NodeUpdateType } from 'three/webgpu';
import { reference, viewZToPerspectiveDepth, logarithmicDepthToViewZ, getScreenPosition, getViewPosition, sqrt, mul, div, cross, float, Continue, Break, Loop, int, max, abs, sub, If, dot, reflect, normalize, screenCoordinate, nodeObject, Fn, passTexture, uv, uniform, perspectiveDepthToViewZ, orthographicDepthToViewZ, vec2, vec3, vec4 } from 'three/tsl';
/** @module SSRNode **/
const _quadMesh = /*@__PURE__*/ new QuadMesh();
const _size = /*@__PURE__*/ new Vector2();
let _rendererState;
/**
* Post processing node for computing screen space reflections (SSR).
*
* Reference: {@link https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-reflection.html}
*
* @augments TempNode
*/
class SSRNode extends TempNode {
static get type() {
return 'SSRNode';
}
/**
* Constructs a new SSR node.
*
* @param {Node<vec4>} colorNode - The node that represents the beauty pass.
* @param {Node<float>} depthNode - A node that represents the beauty pass's depth.
* @param {Node<vec3>} normalNode - A node that represents the beauty pass's normals.
* @param {Node<float>} metalnessNode - A node that represents the beauty pass's metalness.
* @param {Camera} camera - The camera the scene is rendered with.
*/
constructor( colorNode, depthNode, normalNode, metalnessNode, camera ) {
super( 'vec4' );
/**
* The node that represents the beauty pass.
*
* @type {Node<vec4>}
*/
this.colorNode = colorNode;
/**
* A node that represents the beauty pass's depth.
*
* @type {Node<float>}
*/
this.depthNode = depthNode;
/**
* A node that represents the beauty pass's normals.
*
* @type {Node<vec3>}
*/
this.normalNode = normalNode;
/**
* A node that represents the beauty pass's metalness.
*
* @type {Node<float>}
*/
this.metalnessNode = metalnessNode;
/**
* The camera the scene is rendered with.
*
* @type {Camera}
*/
this.camera = camera;
/**
* The resolution scale. By default SSR reflections
* are computed in half resolutions. Setting the value
* to `1` improves quality but also results in more
* computational overhead.
*
* @type {Number}
* @default 0.5
*/
this.resolutionScale = 0.5;
/**
* The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node renders
* its effect once per frame in `updateBefore()`.
*
* @type {String}
* @default 'frame'
*/
this.updateBeforeType = NodeUpdateType.FRAME;
/**
* The render target the SSR is rendered into.
*
* @private
* @type {RenderTarget}
*/
this._ssrRenderTarget = new RenderTarget( 1, 1, { depthBuffer: false, minFilter: NearestFilter, magFilter: NearestFilter } );
this._ssrRenderTarget.texture.name = 'SSRNode.SSR';
/**
* Controls how far a fragment can reflect
*
*
* @type {UniformNode<float>}
*/
this.maxDistance = uniform( 1 );
/**
* Controls the cutoff between what counts as a possible reflection hit and what does not.
*
* @type {UniformNode<float>}
*/
this.thickness = uniform( 0.1 );
/**
* Controls the transparency of the reflected colors.
*
* @type {UniformNode<float>}
*/
this.opacity = uniform( 1 );
/**
* Represents the projection matrix of the scene's camera.
*
* @private
* @type {UniformNode<mat4>}
*/
this._cameraProjectionMatrix = uniform( camera.projectionMatrix );
/**
* Represents the inverse projection matrix of the scene's camera.
*
* @private
* @type {UniformNode<mat4>}
*/
this._cameraProjectionMatrixInverse = uniform( camera.projectionMatrixInverse );
/**
* Represents the near value of the scene's camera.
*
* @private
* @type {ReferenceNode<float>}
*/
this._cameraNear = reference( 'near', 'float', camera );
/**
* Represents the far value of the scene's camera.
*
* @private
* @type {ReferenceNode<float>}
*/
this._cameraFar = reference( 'far', 'float', camera );
/**
* Whether the scene's camera is perspective or orthographic.
*
* @private
* @type {UniformNode<bool>}
*/
this._isPerspectiveCamera = uniform( camera.isPerspectiveCamera ? 1 : 0 );
/**
* The resolution of the pass.
*
* @private
* @type {UniformNode<vec2>}
*/
this._resolution = uniform( new Vector2() );
/**
* This value is derived from the resolution and restricts
* the maximum raymarching steps in the fragment shader.
*
* @private
* @type {UniformNode<float>}
*/
this._maxStep = uniform( 0 );
/**
* The material that is used to render the effect.
*
* @private
* @type {NodeMaterial}
*/
this._material = new NodeMaterial();
this._material.name = 'SSRNode.SSR';
/**
* The result of the effect is represented as a separate texture node.
*
* @private
* @type {PassTextureNode}
*/
this._textureNode = passTexture( this, this._ssrRenderTarget.texture );
}
/**
* Returns the result of the effect as a texture node.
*
* @return {PassTextureNode} A texture node that represents the result of the effect.
*/
getTextureNode() {
return this._textureNode;
}
/**
* Sets the size of the effect.
*
* @param {Number} width - The width of the effect.
* @param {Number} height - The height of the effect.
*/
setSize( width, height ) {
width = Math.round( this.resolutionScale * width );
height = Math.round( this.resolutionScale * height );
this._resolution.value.set( width, height );
this._maxStep.value = Math.round( Math.sqrt( width * width + height * height ) );
this._ssrRenderTarget.setSize( width, height );
}
/**
* This method is used to render the effect once per frame.
*
* @param {NodeFrame} frame - The current node frame.
*/
updateBefore( frame ) {
const { renderer } = frame;
_rendererState = RendererUtils.resetRendererState( renderer, _rendererState );
const size = renderer.getDrawingBufferSize( _size );
_quadMesh.material = this._material;
this.setSize( size.width, size.height );
// clear
renderer.setMRT( null );
renderer.setClearColor( 0x000000, 0 );
// ssr
renderer.setRenderTarget( this._ssrRenderTarget );
_quadMesh.render( renderer );
// restore
RendererUtils.restoreRendererState( renderer, _rendererState );
}
/**
* This method is used to setup the effect's TSL code.
*
* @param {NodeBuilder} builder - The current node builder.
* @return {PassTextureNode}
*/
setup( builder ) {
const uvNode = uv();
const pointToLineDistance = Fn( ( [ point, linePointA, linePointB ] )=> {
// https://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
return cross( point.sub( linePointA ), point.sub( linePointB ) ).length().div( linePointB.sub( linePointA ).length() );
} );
const pointPlaneDistance = Fn( ( [ point, planePoint, planeNormal ] )=> {
// https://mathworld.wolfram.com/Point-PlaneDistance.html
// https://en.wikipedia.org/wiki/Plane_(geometry)
// http://paulbourke.net/geometry/pointlineplane/
const d = mul( planeNormal.x, planePoint.x ).add( mul( planeNormal.y, planePoint.y ) ).add( mul( planeNormal.z, planePoint.z ) ).negate().toVar();
const denominator = sqrt( mul( planeNormal.x, planeNormal.x, ).add( mul( planeNormal.y, planeNormal.y ) ).add( mul( planeNormal.z, planeNormal.z ) ) ).toVar();
const distance = div( mul( planeNormal.x, point.x ).add( mul( planeNormal.y, point.y ) ).add( mul( planeNormal.z, point.z ) ).add( d ), denominator );
return distance;
} );
const getViewZ = Fn( ( [ depth ] ) => {
let viewZNode;
if ( this.camera.isPerspectiveCamera ) {
viewZNode = perspectiveDepthToViewZ( depth, this._cameraNear, this._cameraFar );
} else {
viewZNode = orthographicDepthToViewZ( depth, this._cameraNear, this._cameraFar );
}
return viewZNode;
} );
const sampleDepth = ( uv ) => {
const depth = this.depthNode.sample( uv ).r;
if ( builder.renderer.logarithmicDepthBuffer === true ) {
const viewZ = logarithmicDepthToViewZ( depth, this._cameraNear, this._cameraFar );
return viewZToPerspectiveDepth( viewZ, this._cameraNear, this._cameraFar );
}
return depth;
};
const ssr = Fn( () => {
const metalness = this.metalnessNode.sample( uvNode ).r;
// fragments with no metalness do not reflect their environment
metalness.equal( 0.0 ).discard();
// compute some standard FX entities
const depth = sampleDepth( uvNode ).toVar();
const viewPosition = getViewPosition( uvNode, depth, this._cameraProjectionMatrixInverse ).toVar();
const viewNormal = this.normalNode.rgb.normalize().toVar();
// compute the direction from the position in view space to the camera
const viewIncidentDir = ( ( this.camera.isPerspectiveCamera ) ? normalize( viewPosition ) : vec3( 0, 0, - 1 ) ).toVar();
// compute the direction in which the light is reflected on the surface
const viewReflectDir = reflect( viewIncidentDir, viewNormal ).toVar();
// adapt maximum distance to the local geometry (see https://www.mathsisfun.com/algebra/vectors-dot-product.html)
const maxReflectRayLen = this.maxDistance.div( dot( viewIncidentDir.negate(), viewNormal ) ).toVar();
// compute the maximum point of the reflection ray in view space
const d1viewPosition = viewPosition.add( viewReflectDir.mul( maxReflectRayLen ) ).toVar();
// check if d1viewPosition lies behind the camera near plane
If( this._isPerspectiveCamera.equal( float( 1 ) ).and( d1viewPosition.z.greaterThan( this._cameraNear.negate() ) ), () => {
// if so, ensure d1viewPosition is clamped on the near plane.
// this prevents artifacts during the ray marching process
const t = sub( this._cameraNear.negate(), viewPosition.z ).div( viewReflectDir.z );
d1viewPosition.assign( viewPosition.add( viewReflectDir.mul( t ) ) );
} );
// d0 and d1 are the start and maximum points of the reflection ray in screen space
const d0 = screenCoordinate.xy.toVar();
const d1 = getScreenPosition( d1viewPosition, this._cameraProjectionMatrix ).mul( this._resolution ).toVar();
// below variables are used to control the raymarching process
// total length of the ray
const totalLen = d1.sub( d0 ).length().toVar();
// offset in x and y direction
const xLen = d1.x.sub( d0.x ).toVar();
const yLen = d1.y.sub( d0.y ).toVar();
// determine the larger delta
// The larger difference will help to determine how much to travel in the X and Y direction each iteration and
// how many iterations are needed to travel the entire ray
const totalStep = max( abs( xLen ), abs( yLen ) ).toVar();
// step sizes in the x and y directions
const xSpan = xLen.div( totalStep ).toVar();
const ySpan = yLen.div( totalStep ).toVar();
const output = vec4( 0 ).toVar();
// the actual ray marching loop
// starting from d0, the code gradually travels along the ray and looks for an intersection with the geometry.
// it does not exceed d1 (the maximum ray extend)
Loop( { start: int( 0 ), end: int( this._maxStep ), type: 'int', condition: '<' }, ( { i } ) => {
// TODO: Remove this when Chrome is fixed, see https://issues.chromium.org/issues/372714384#comment14
If( metalness.equal( 0 ), () => {
Break();
} );
// stop if the maximum number of steps is reached for this specific ray
If( float( i ).greaterThanEqual( totalStep ), () => {
Break();
} );
// advance on the ray by computing a new position in screen space
const xy = vec2( d0.x.add( xSpan.mul( float( i ) ) ), d0.y.add( ySpan.mul( float( i ) ) ) ).toVar();
// stop processing if the new position lies outside of the screen
If( xy.x.lessThan( 0 ).or( xy.x.greaterThan( this._resolution.x ) ).or( xy.y.lessThan( 0 ) ).or( xy.y.greaterThan( this._resolution.y ) ), () => {
Break();
} );
// compute new uv, depth, viewZ and viewPosition for the new location on the ray
const uvNode = xy.div( this._resolution );
const d = sampleDepth( uvNode ).toVar();
const vZ = getViewZ( d ).toVar();
const vP = getViewPosition( uvNode, d, this._cameraProjectionMatrixInverse ).toVar();
const viewReflectRayZ = float( 0 ).toVar();
// normalized distance between the current position xy and the starting point d0
const s = xy.sub( d0 ).length().div( totalLen );
// depending on the camera type, we now compute the z-coordinate of the reflected ray at the current step in view space
If( this._isPerspectiveCamera.equal( float( 1 ) ), () => {
const recipVPZ = float( 1 ).div( viewPosition.z ).toVar();
viewReflectRayZ.assign( float( 1 ).div( recipVPZ.add( s.mul( float( 1 ).div( d1viewPosition.z ).sub( recipVPZ ) ) ) ) );
} ).Else( () => {
viewReflectRayZ.assign( viewPosition.z.add( s.mul( d1viewPosition.z.sub( viewPosition.z ) ) ) );
} );
// if viewReflectRayZ is less or equal than the real z-coordinate at this place, it potentially intersects the geometry
If( viewReflectRayZ.lessThanEqual( vZ ), () => {
// compute the distance of the new location to the ray in view space
// to clarify vP is the fragment's view position which is not an exact point on the ray
const away = pointToLineDistance( vP, viewPosition, d1viewPosition ).toVar();
// compute the minimum thickness between the current fragment and its neighbor in the x-direction.
const xyNeighbor = vec2( xy.x.add( 1 ), xy.y ).toVar(); // move one pixel
const uvNeighbor = xyNeighbor.div( this._resolution );
const vPNeighbor = getViewPosition( uvNeighbor, d, this._cameraProjectionMatrixInverse ).toVar();
const minThickness = vPNeighbor.x.sub( vP.x ).toVar();
minThickness.mulAssign( 3 ); // expand a bit to avoid errors
const tk = max( minThickness, this.thickness ).toVar();
If( away.lessThanEqual( tk ), () => { // hit
const vN = this.normalNode.sample( uvNode ).rgb.normalize().toVar();
If( dot( viewReflectDir, vN ).greaterThanEqual( 0 ), () => {
// the reflected ray is pointing towards the same side as the fragment's normal (current ray position),
// which means it wouldn't reflect off the surface. The loop continues to the next step for the next ray sample.
Continue();
} );
// this distance represents the depth of the intersection point between the reflected ray and the scene.
const distance = pointPlaneDistance( vP, viewPosition, viewNormal ).toVar();
If( distance.greaterThan( this.maxDistance ), () => {
// Distance exceeding limit: The reflection is potentially too far away and
// might not contribute significantly to the final color
Break();
} );
const op = this.opacity.mul( metalness ).toVar();
// distance attenuation (the reflection should fade out the farther it is away from the surface)
const ratio = float( 1 ).sub( distance.div( this.maxDistance ) ).toVar();
const attenuation = ratio.mul( ratio );
op.mulAssign( attenuation );
// fresnel (reflect more light on surfaces that are viewed at grazing angles)
const fresnelCoe = div( dot( viewIncidentDir, viewReflectDir ).add( 1 ), 2 );
op.mulAssign( fresnelCoe );
// output
const reflectColor = this.colorNode.sample( uvNode );
output.assign( vec4( reflectColor.rgb, op ) );
Break();
} );
} );
} );
return output;
} );
this._material.fragmentNode = ssr().context( builder.getSharedContext() );
this._material.needsUpdate = true;
//
return this._textureNode;
}
/**
* Frees internal resources. This method should be called
* when the effect is no longer required.
*/
dispose() {
this._ssrRenderTarget.dispose();
this._material.dispose();
}
}
export default SSRNode;
/**
* TSL function for creating screen space reflections (SSR).
*
* @function
* @param {Node<vec4>} colorNode - The node that represents the beauty pass.
* @param {Node<float>} depthNode - A node that represents the beauty pass's depth.
* @param {Node<vec3>} normalNode - A node that represents the beauty pass's normals.
* @param {Node<float>} metalnessNode - A node that represents the beauty pass's metalness.
* @param {Camera} camera - The camera the scene is rendered with.
* @returns {SSRNode}
*/
export const ssr = ( colorNode, depthNode, normalNode, metalnessNode, camera ) => nodeObject( new SSRNode( nodeObject( colorNode ), nodeObject( depthNode ), nodeObject( normalNode ), nodeObject( metalnessNode ), camera ) );
|