File size: 16,749 Bytes
a28eca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import { NearestFilter, RenderTarget, Vector2, RendererUtils, QuadMesh, TempNode, NodeMaterial, NodeUpdateType } from 'three/webgpu';
import { reference, viewZToPerspectiveDepth, logarithmicDepthToViewZ, getScreenPosition, getViewPosition, sqrt, mul, div, cross, float, Continue, Break, Loop, int, max, abs, sub, If, dot, reflect, normalize, screenCoordinate, nodeObject, Fn, passTexture, uv, uniform, perspectiveDepthToViewZ, orthographicDepthToViewZ, vec2, vec3, vec4 } from 'three/tsl';

/** @module SSRNode **/

const _quadMesh = /*@__PURE__*/ new QuadMesh();
const _size = /*@__PURE__*/ new Vector2();
let _rendererState;

/**
 * Post processing node for computing screen space reflections (SSR).
 *
 * Reference: {@link https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-reflection.html}
 *
 * @augments TempNode
 */
class SSRNode extends TempNode {

	static get type() {

		return 'SSRNode';

	}

	/**
	 * Constructs a new SSR node.
	 *
	 * @param {Node<vec4>} colorNode - The node that represents the beauty pass.
	 * @param {Node<float>} depthNode - A node that represents the beauty pass's depth.
	 * @param {Node<vec3>} normalNode - A node that represents the beauty pass's normals.
	 * @param {Node<float>} metalnessNode - A node that represents the beauty pass's metalness.
	 * @param {Camera} camera - The camera the scene is rendered with.
	 */
	constructor( colorNode, depthNode, normalNode, metalnessNode, camera ) {

		super( 'vec4' );

		/**
		 * The node that represents the beauty pass.
		 *
		 * @type {Node<vec4>}
		 */
		this.colorNode = colorNode;

		/**
		 * A node that represents the beauty pass's depth.
		 *
		 * @type {Node<float>}
		 */
		this.depthNode = depthNode;

		/**
		 * A node that represents the beauty pass's normals.
		 *
		 * @type {Node<vec3>}
		 */
		this.normalNode = normalNode;

		/**
		 * A node that represents the beauty pass's metalness.
		 *
		 * @type {Node<float>}
		 */
		this.metalnessNode = metalnessNode;

		/**
		 * The camera the scene is rendered with.
		 *
		 * @type {Camera}
		 */
		this.camera = camera;

		/**
		 * The resolution scale. By default SSR reflections
		 * are computed in half resolutions. Setting the value
		 * to `1` improves quality but also results in more
		 * computational overhead.
		 *
		 * @type {Number}
		 * @default 0.5
		 */
		this.resolutionScale = 0.5;

		/**
		 * The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node renders
		 * its effect once per frame in `updateBefore()`.
		 *
		 * @type {String}
		 * @default 'frame'
		 */
		this.updateBeforeType = NodeUpdateType.FRAME;

		/**
		 * The render target the SSR is rendered into.
		 *
		 * @private
		 * @type {RenderTarget}
		 */
		this._ssrRenderTarget = new RenderTarget( 1, 1, { depthBuffer: false, minFilter: NearestFilter, magFilter: NearestFilter } );
		this._ssrRenderTarget.texture.name = 'SSRNode.SSR';

		/**
		 * Controls how far a fragment can reflect
		 *
		 *
		 * @type {UniformNode<float>}
		 */
		this.maxDistance = uniform( 1 );

		/**
		 * Controls the cutoff between what counts as a possible reflection hit and what does not.
		 *
		 * @type {UniformNode<float>}
		 */
		this.thickness = uniform( 0.1 );

		/**
		 * Controls the transparency of the reflected colors.
		 *
		 * @type {UniformNode<float>}
		 */
		this.opacity = uniform( 1 );

		/**
		 * Represents the projection matrix of the scene's camera.
		 *
		 * @private
		 * @type {UniformNode<mat4>}
		 */
		this._cameraProjectionMatrix = uniform( camera.projectionMatrix );

		/**
		 * Represents the inverse projection matrix of the scene's camera.
		 *
		 * @private
		 * @type {UniformNode<mat4>}
		 */
		this._cameraProjectionMatrixInverse = uniform( camera.projectionMatrixInverse );

		/**
		 * Represents the near value of the scene's camera.
		 *
		 * @private
		 * @type {ReferenceNode<float>}
		 */
		this._cameraNear = reference( 'near', 'float', camera );

		/**
		 * Represents the far value of the scene's camera.
		 *
		 * @private
		 * @type {ReferenceNode<float>}
		 */
		this._cameraFar = reference( 'far', 'float', camera );

		/**
		 * Whether the scene's camera is perspective or orthographic.
		 *
		 * @private
		 * @type {UniformNode<bool>}
		 */
		this._isPerspectiveCamera = uniform( camera.isPerspectiveCamera ? 1 : 0 );

		/**
		 * The resolution of the pass.
		 *
		 * @private
		 * @type {UniformNode<vec2>}
		 */
		this._resolution = uniform( new Vector2() );

		/**
		 * This value is derived from the resolution and restricts
		 * the maximum raymarching steps in the fragment shader.
		 *
		 * @private
		 * @type {UniformNode<float>}
		 */
		this._maxStep = uniform( 0 );

		/**
		 * The material that is used to render the effect.
		 *
		 * @private
		 * @type {NodeMaterial}
		 */
		this._material = new NodeMaterial();
		this._material.name = 'SSRNode.SSR';

		/**
		 * The result of the effect is represented as a separate texture node.
		 *
		 * @private
		 * @type {PassTextureNode}
		 */
		this._textureNode = passTexture( this, this._ssrRenderTarget.texture );

	}

	/**
	 * Returns the result of the effect as a texture node.
	 *
	 * @return {PassTextureNode} A texture node that represents the result of the effect.
	 */
	getTextureNode() {

		return this._textureNode;

	}

	/**
	 * Sets the size of the effect.
	 *
	 * @param {Number} width - The width of the effect.
	 * @param {Number} height - The height of the effect.
	 */
	setSize( width, height ) {

		width = Math.round( this.resolutionScale * width );
		height = Math.round( this.resolutionScale * height );

		this._resolution.value.set( width, height );
		this._maxStep.value = Math.round( Math.sqrt( width * width + height * height ) );

		this._ssrRenderTarget.setSize( width, height );

	}

	/**
	 * This method is used to render the effect once per frame.
	 *
	 * @param {NodeFrame} frame - The current node frame.
	 */
	updateBefore( frame ) {

		const { renderer } = frame;

		_rendererState = RendererUtils.resetRendererState( renderer, _rendererState );

		const size = renderer.getDrawingBufferSize( _size );

		_quadMesh.material = this._material;

		this.setSize( size.width, size.height );

		// clear

		renderer.setMRT( null );
		renderer.setClearColor( 0x000000, 0 );

		// ssr

		renderer.setRenderTarget( this._ssrRenderTarget );
		_quadMesh.render( renderer );

		// restore

		RendererUtils.restoreRendererState( renderer, _rendererState );

	}

	/**
	 * This method is used to setup the effect's TSL code.
	 *
	 * @param {NodeBuilder} builder - The current node builder.
	 * @return {PassTextureNode}
	 */
	setup( builder ) {

		const uvNode = uv();

		const pointToLineDistance = Fn( ( [ point, linePointA, linePointB ] )=> {

			// https://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html

			return cross( point.sub( linePointA ), point.sub( linePointB ) ).length().div( linePointB.sub( linePointA ).length() );

		} );

		const pointPlaneDistance = Fn( ( [ point, planePoint, planeNormal ] )=> {

			// https://mathworld.wolfram.com/Point-PlaneDistance.html
			// https://en.wikipedia.org/wiki/Plane_(geometry)
			// http://paulbourke.net/geometry/pointlineplane/

			const d = mul( planeNormal.x, planePoint.x ).add( mul( planeNormal.y, planePoint.y ) ).add( mul( planeNormal.z, planePoint.z ) ).negate().toVar();

			const denominator = sqrt( mul( planeNormal.x, planeNormal.x, ).add( mul( planeNormal.y, planeNormal.y ) ).add( mul( planeNormal.z, planeNormal.z ) ) ).toVar();
			const distance = div( mul( planeNormal.x, point.x ).add( mul( planeNormal.y, point.y ) ).add( mul( planeNormal.z, point.z ) ).add( d ), denominator );
			return distance;

		} );

		const getViewZ = Fn( ( [ depth ] ) => {

			let viewZNode;

			if ( this.camera.isPerspectiveCamera ) {

				viewZNode = perspectiveDepthToViewZ( depth, this._cameraNear, this._cameraFar );

			} else {

				viewZNode = orthographicDepthToViewZ( depth, this._cameraNear, this._cameraFar );

			}

			return viewZNode;

		} );

		const sampleDepth = ( uv ) => {

			const depth = this.depthNode.sample( uv ).r;

			if ( builder.renderer.logarithmicDepthBuffer === true ) {

				const viewZ = logarithmicDepthToViewZ( depth, this._cameraNear, this._cameraFar );

				return viewZToPerspectiveDepth( viewZ, this._cameraNear, this._cameraFar );

			}

			return depth;

		};

		const ssr = Fn( () => {

			const metalness = this.metalnessNode.sample( uvNode ).r;

			// fragments with no metalness do not reflect their environment
			metalness.equal( 0.0 ).discard();

			// compute some standard FX entities
			const depth = sampleDepth( uvNode ).toVar();
			const viewPosition = getViewPosition( uvNode, depth, this._cameraProjectionMatrixInverse ).toVar();
			const viewNormal = this.normalNode.rgb.normalize().toVar();

			// compute the direction from the position in view space to the camera
			const viewIncidentDir = ( ( this.camera.isPerspectiveCamera ) ? normalize( viewPosition ) : vec3( 0, 0, - 1 ) ).toVar();

			// compute the direction in which the light is reflected on the surface
			const viewReflectDir = reflect( viewIncidentDir, viewNormal ).toVar();

			// adapt maximum distance to the local geometry (see https://www.mathsisfun.com/algebra/vectors-dot-product.html)
			const maxReflectRayLen = this.maxDistance.div( dot( viewIncidentDir.negate(), viewNormal ) ).toVar();

			// compute the maximum point of the reflection ray in view space
			const d1viewPosition = viewPosition.add( viewReflectDir.mul( maxReflectRayLen ) ).toVar();

			// check if d1viewPosition lies behind the camera near plane
			If( this._isPerspectiveCamera.equal( float( 1 ) ).and( d1viewPosition.z.greaterThan( this._cameraNear.negate() ) ), () => {

				// if so, ensure d1viewPosition is clamped on the near plane.
				// this prevents artifacts during the ray marching process
				const t = sub( this._cameraNear.negate(), viewPosition.z ).div( viewReflectDir.z );
				d1viewPosition.assign( viewPosition.add( viewReflectDir.mul( t ) ) );

			} );

			// d0 and d1 are the start and maximum points of the reflection ray in screen space
			const d0 = screenCoordinate.xy.toVar();
			const d1 = getScreenPosition( d1viewPosition, this._cameraProjectionMatrix ).mul( this._resolution ).toVar();

			// below variables are used to control the raymarching process

			// total length of the ray
			const totalLen = d1.sub( d0 ).length().toVar();

			// offset in x and y direction
			const xLen = d1.x.sub( d0.x ).toVar();
			const yLen = d1.y.sub( d0.y ).toVar();

			// determine the larger delta
			// The larger difference will help to determine how much to travel in the X and Y direction each iteration and
			// how many iterations are needed to travel the entire ray
			const totalStep = max( abs( xLen ), abs( yLen ) ).toVar();

			// step sizes in the x and y directions
			const xSpan = xLen.div( totalStep ).toVar();
			const ySpan = yLen.div( totalStep ).toVar();

			const output = vec4( 0 ).toVar();

			// the actual ray marching loop
			// starting from d0, the code gradually travels along the ray and looks for an intersection with the geometry.
			// it does not exceed d1 (the maximum ray extend)
			Loop( { start: int( 0 ), end: int( this._maxStep ), type: 'int', condition: '<' }, ( { i } ) => {

				// TODO: Remove this when Chrome is fixed, see https://issues.chromium.org/issues/372714384#comment14
				If( metalness.equal( 0 ), () => {

					Break();

				} );

				// stop if the maximum number of steps is reached for this specific ray
				If( float( i ).greaterThanEqual( totalStep ), () => {

					Break();

				} );

				// advance on the ray by computing a new position in screen space
				const xy = vec2( d0.x.add( xSpan.mul( float( i ) ) ), d0.y.add( ySpan.mul( float( i ) ) ) ).toVar();

				// stop processing if the new position lies outside of the screen
				If( xy.x.lessThan( 0 ).or( xy.x.greaterThan( this._resolution.x ) ).or( xy.y.lessThan( 0 ) ).or( xy.y.greaterThan( this._resolution.y ) ), () => {

					Break();

				} );

				// compute new uv, depth, viewZ and viewPosition for the new location on the ray
				const uvNode = xy.div( this._resolution );
				const d = sampleDepth( uvNode ).toVar();
				const vZ = getViewZ( d ).toVar();
				const vP = getViewPosition( uvNode, d, this._cameraProjectionMatrixInverse ).toVar();

				const viewReflectRayZ = float( 0 ).toVar();

				// normalized distance between the current position xy and the starting point d0
				const s = xy.sub( d0 ).length().div( totalLen );

				// depending on the camera type, we now compute the z-coordinate of the reflected ray at the current step in view space
				If( this._isPerspectiveCamera.equal( float( 1 ) ), () => {

					const recipVPZ = float( 1 ).div( viewPosition.z ).toVar();
					viewReflectRayZ.assign( float( 1 ).div( recipVPZ.add( s.mul( float( 1 ).div( d1viewPosition.z ).sub( recipVPZ ) ) ) ) );

				} ).Else( () => {

					viewReflectRayZ.assign( viewPosition.z.add( s.mul( d1viewPosition.z.sub( viewPosition.z ) ) ) );

				} );

				// if viewReflectRayZ is less or equal than the real z-coordinate at this place, it potentially intersects the geometry
				If( viewReflectRayZ.lessThanEqual( vZ ), () => {

					// compute the distance of the new location to the ray in view space
					// to clarify vP is the fragment's view position which is not an exact point on the ray
					const away = pointToLineDistance( vP, viewPosition, d1viewPosition ).toVar();

					// compute the minimum thickness between the current fragment and its neighbor in the x-direction.
					const xyNeighbor = vec2( xy.x.add( 1 ), xy.y ).toVar(); // move one pixel
					const uvNeighbor = xyNeighbor.div( this._resolution );
					const vPNeighbor = getViewPosition( uvNeighbor, d, this._cameraProjectionMatrixInverse ).toVar();
					const minThickness = vPNeighbor.x.sub( vP.x ).toVar();
					minThickness.mulAssign( 3 ); // expand a bit to avoid errors

					const tk = max( minThickness, this.thickness ).toVar();

					If( away.lessThanEqual( tk ), () => { // hit

						const vN = this.normalNode.sample( uvNode ).rgb.normalize().toVar();

						If( dot( viewReflectDir, vN ).greaterThanEqual( 0 ), () => {

							// the reflected ray is pointing towards the same side as the fragment's normal (current ray position),
							// which means it wouldn't reflect off the surface. The loop continues to the next step for the next ray sample.
							Continue();

						} );

						// this distance represents the depth of the intersection point between the reflected ray and the scene.
						const distance = pointPlaneDistance( vP, viewPosition, viewNormal ).toVar();

						If( distance.greaterThan( this.maxDistance ), () => {

							// Distance exceeding limit: The reflection is potentially too far away and
							// might not contribute significantly to the final color
							Break();

						} );

						const op = this.opacity.mul( metalness ).toVar();

						// distance attenuation (the reflection should fade out the farther it is away from the surface)
						const ratio = float( 1 ).sub( distance.div( this.maxDistance ) ).toVar();
						const attenuation = ratio.mul( ratio );
						op.mulAssign( attenuation );

						// fresnel (reflect more light on surfaces that are viewed at grazing angles)
						const fresnelCoe = div( dot( viewIncidentDir, viewReflectDir ).add( 1 ), 2 );
						op.mulAssign( fresnelCoe );

						// output
						const reflectColor = this.colorNode.sample( uvNode );
						output.assign( vec4( reflectColor.rgb, op ) );
						Break();

					} );

				} );

			} );

			return output;

		} );

		this._material.fragmentNode = ssr().context( builder.getSharedContext() );
		this._material.needsUpdate = true;

		//

		return this._textureNode;

	}

	/**
	 * Frees internal resources. This method should be called
	 * when the effect is no longer required.
	 */
	dispose() {

		this._ssrRenderTarget.dispose();

		this._material.dispose();

	}

}

export default SSRNode;

/**
 * TSL function for creating screen space reflections (SSR).
 *
 * @function
 * @param {Node<vec4>} colorNode - The node that represents the beauty pass.
 * @param {Node<float>} depthNode - A node that represents the beauty pass's depth.
 * @param {Node<vec3>} normalNode - A node that represents the beauty pass's normals.
 * @param {Node<float>} metalnessNode - A node that represents the beauty pass's metalness.
 * @param {Camera} camera - The camera the scene is rendered with.
 * @returns {SSRNode}
 */
export const ssr = ( colorNode, depthNode, normalNode, metalnessNode, camera ) => nodeObject( new SSRNode( nodeObject( colorNode ), nodeObject( depthNode ), nodeObject( normalNode ), nodeObject( metalnessNode ), camera ) );