Spaces:
Running
Running
import { DataTexture, RepeatWrapping, Vector2, Vector3, TempNode } from 'three/webgpu'; | |
import { texture, getNormalFromDepth, getViewPosition, convertToTexture, nodeObject, Fn, float, NodeUpdateType, uv, uniform, Loop, luminance, vec2, vec3, vec4, uniformArray, int, dot, max, pow, abs, If, textureSize, sin, cos, mat2, PI } from 'three/tsl'; | |
import { SimplexNoise } from '../../math/SimplexNoise.js'; | |
/** @module DenoiseNode **/ | |
/** | |
* Post processing node for denoising data like raw screen-space ambient occlusion output. | |
* Denoise can noticeably improve the quality of ambient occlusion but also add quite some | |
* overhead to the post processing setup. It's best to make its usage optional (e.g. via | |
* graphic settings). | |
* | |
* Reference: {@link https://openaccess.thecvf.com/content/WACV2021/papers/Khademi_Self-Supervised_Poisson-Gaussian_Denoising_WACV_2021_paper.pdf}. | |
* | |
* @augments TempNode | |
*/ | |
class DenoiseNode extends TempNode { | |
static get type() { | |
return 'DenoiseNode'; | |
} | |
/** | |
* Constructs a new denoise node. | |
* | |
* @param {TextureNode} textureNode - The texture node that represents the input of the effect (e.g. AO). | |
* @param {Node<float>} depthNode - A node that represents the scene's depth. | |
* @param {Node<vec3>?} normalNode - A node that represents the scene's normals. | |
* @param {Camera} camera - The camera the scene is rendered with. | |
*/ | |
constructor( textureNode, depthNode, normalNode, camera ) { | |
super( 'vec4' ); | |
/** | |
* The texture node that represents the input of the effect (e.g. AO). | |
* | |
* @type {TextureNode} | |
*/ | |
this.textureNode = textureNode; | |
/** | |
* A node that represents the scene's depth. | |
* | |
* @type {Node<float>} | |
*/ | |
this.depthNode = depthNode; | |
/** | |
* A node that represents the scene's normals. If no normals are passed to the | |
* constructor (because MRT is not available), normals can be automatically | |
* reconstructed from depth values in the shader. | |
* | |
* @type {Node<vec3>?} | |
*/ | |
this.normalNode = normalNode; | |
/** | |
* The node represents the internal noise texture. | |
* | |
* @type {TextureNode} | |
*/ | |
this.noiseNode = texture( generateDefaultNoise() ); | |
/** | |
* The luma Phi value. | |
* | |
* @type {UniformNode<float>} | |
*/ | |
this.lumaPhi = uniform( 5 ); | |
/** | |
* The depth Phi value. | |
* | |
* @type {UniformNode<float>} | |
*/ | |
this.depthPhi = uniform( 5 ); | |
/** | |
* The normal Phi value. | |
* | |
* @type {UniformNode<float>} | |
*/ | |
this.normalPhi = uniform( 5 ); | |
/** | |
* The radius. | |
* | |
* @type {UniformNode<float>} | |
*/ | |
this.radius = uniform( 5 ); | |
/** | |
* The index. | |
* | |
* @type {UniformNode<float>} | |
*/ | |
this.index = uniform( 0 ); | |
/** | |
* The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node updates | |
* its internal uniforms once per frame in `updateBefore()`. | |
* | |
* @type {String} | |
* @default 'frame' | |
*/ | |
this.updateBeforeType = NodeUpdateType.FRAME; | |
/** | |
* The resolution of the effect. | |
* | |
* @private | |
* @type {UniformNode<vec2>} | |
*/ | |
this._resolution = uniform( new Vector2() ); | |
/** | |
* An array of sample vectors. | |
* | |
* @private | |
* @type {UniformArrayNode<vec3>} | |
*/ | |
this._sampleVectors = uniformArray( generateDenoiseSamples( 16, 2, 1 ) ); | |
/** | |
* Represents the inverse projection matrix of the scene's camera. | |
* | |
* @private | |
* @type {UniformNode<mat4>} | |
*/ | |
this._cameraProjectionMatrixInverse = uniform( camera.projectionMatrixInverse ); | |
} | |
/** | |
* This method is used to update internal uniforms once per frame. | |
* | |
* @param {NodeFrame} frame - The current node frame. | |
*/ | |
updateBefore() { | |
const map = this.textureNode.value; | |
this._resolution.value.set( map.image.width, map.image.height ); | |
} | |
/** | |
* This method is used to setup the effect's TSL code. | |
* | |
* @param {NodeBuilder} builder - The current node builder. | |
* @return {ShaderCallNodeInternal} | |
*/ | |
setup( /* builder */ ) { | |
const uvNode = uv(); | |
const sampleTexture = ( uv ) => this.textureNode.sample( uv ); | |
const sampleDepth = ( uv ) => this.depthNode.sample( uv ).x; | |
const sampleNormal = ( uv ) => ( this.normalNode !== null ) ? this.normalNode.sample( uv ).rgb.normalize() : getNormalFromDepth( uv, this.depthNode.value, this._cameraProjectionMatrixInverse ); | |
const sampleNoise = ( uv ) => this.noiseNode.sample( uv ); | |
const denoiseSample = Fn( ( [ center, viewNormal, viewPosition, sampleUv ] ) => { | |
const texel = sampleTexture( sampleUv ).toVar(); | |
const depth = sampleDepth( sampleUv ).toVar(); | |
const normal = sampleNormal( sampleUv ).toVar(); | |
const neighborColor = texel.rgb; | |
const viewPos = getViewPosition( sampleUv, depth, this._cameraProjectionMatrixInverse ).toVar(); | |
const normalDiff = dot( viewNormal, normal ).toVar(); | |
const normalSimilarity = pow( max( normalDiff, 0 ), this.normalPhi ).toVar(); | |
const lumaDiff = abs( luminance( neighborColor ).sub( luminance( center ) ) ).toVar(); | |
const lumaSimilarity = max( float( 1.0 ).sub( lumaDiff.div( this.lumaPhi ) ), 0 ).toVar(); | |
const depthDiff = abs( dot( viewPosition.sub( viewPos ), viewNormal ) ).toVar(); | |
const depthSimilarity = max( float( 1.0 ).sub( depthDiff.div( this.depthPhi ) ), 0 ); | |
const w = lumaSimilarity.mul( depthSimilarity ).mul( normalSimilarity ); | |
return vec4( neighborColor.mul( w ), w ); | |
} ); | |
const denoise = Fn( ( [ uvNode ] ) => { | |
const depth = sampleDepth( uvNode ).toVar(); | |
const viewNormal = sampleNormal( uvNode ).toVar(); | |
const texel = sampleTexture( uvNode ).toVar(); | |
If( depth.greaterThanEqual( 1.0 ).or( dot( viewNormal, viewNormal ).equal( 0.0 ) ), () => { | |
return texel; | |
} ); | |
const center = vec3( texel.rgb ).toVar(); | |
const viewPosition = getViewPosition( uvNode, depth, this._cameraProjectionMatrixInverse ).toVar(); | |
const noiseResolution = textureSize( this.noiseNode, 0 ); | |
let noiseUv = vec2( uvNode.x, uvNode.y.oneMinus() ); | |
noiseUv = noiseUv.mul( this._resolution.div( noiseResolution ) ); | |
const noiseTexel = sampleNoise( noiseUv ).toVar(); | |
const x = sin( noiseTexel.element( this.index.mod( 4 ).mul( 2 ).mul( PI ) ) ).toVar(); | |
const y = cos( noiseTexel.element( this.index.mod( 4 ).mul( 2 ).mul( PI ) ) ).toVar(); | |
const noiseVec = vec2( x, y ).toVar(); | |
const rotationMatrix = mat2( noiseVec.x, noiseVec.y.negate(), noiseVec.x, noiseVec.y ).toVar(); | |
const totalWeight = float( 1.0 ).toVar(); | |
const denoised = vec3( texel.rgb ).toVar(); | |
Loop( { start: int( 0 ), end: int( 16 ), type: 'int', condition: '<' }, ( { i } ) => { | |
const sampleDir = this._sampleVectors.element( i ).toVar(); | |
const offset = rotationMatrix.mul( sampleDir.xy.mul( float( 1.0 ).add( sampleDir.z.mul( this.radius.sub( 1 ) ) ) ) ).div( this._resolution ).toVar(); | |
const sampleUv = uvNode.add( offset ).toVar(); | |
const result = denoiseSample( center, viewNormal, viewPosition, sampleUv ); | |
denoised.addAssign( result.xyz ); | |
totalWeight.addAssign( result.w ); | |
} ); | |
If( totalWeight.greaterThan( float( 0 ) ), () => { | |
denoised.divAssign( totalWeight ); | |
} ); | |
return vec4( denoised, texel.a ); | |
} ).setLayout( { | |
name: 'denoise', | |
type: 'vec4', | |
inputs: [ | |
{ name: 'uv', type: 'vec2' } | |
] | |
} ); | |
const output = Fn( () => { | |
return denoise( uvNode ); | |
} ); | |
const outputNode = output(); | |
return outputNode; | |
} | |
} | |
export default DenoiseNode; | |
/** | |
* Generates denoise samples based on the given parameters. | |
* | |
* @param {Number} numSamples - The number of samples. | |
* @param {Number} numRings - The number of rings. | |
* @param {Number} radiusExponent - The radius exponent. | |
* @return {Array<Vector3>} The denoise samples. | |
*/ | |
function generateDenoiseSamples( numSamples, numRings, radiusExponent ) { | |
const samples = []; | |
for ( let i = 0; i < numSamples; i ++ ) { | |
const angle = 2 * Math.PI * numRings * i / numSamples; | |
const radius = Math.pow( i / ( numSamples - 1 ), radiusExponent ); | |
samples.push( new Vector3( Math.cos( angle ), Math.sin( angle ), radius ) ); | |
} | |
return samples; | |
} | |
/** | |
* Generates a default noise texture for the given size. | |
* | |
* @param {Number} [size=64] - The texture size. | |
* @return {DataTexture} The generated noise texture. | |
*/ | |
function generateDefaultNoise( size = 64 ) { | |
const simplex = new SimplexNoise(); | |
const arraySize = size * size * 4; | |
const data = new Uint8Array( arraySize ); | |
for ( let i = 0; i < size; i ++ ) { | |
for ( let j = 0; j < size; j ++ ) { | |
const x = i; | |
const y = j; | |
data[ ( i * size + j ) * 4 ] = ( simplex.noise( x, y ) * 0.5 + 0.5 ) * 255; | |
data[ ( i * size + j ) * 4 + 1 ] = ( simplex.noise( x + size, y ) * 0.5 + 0.5 ) * 255; | |
data[ ( i * size + j ) * 4 + 2 ] = ( simplex.noise( x, y + size ) * 0.5 + 0.5 ) * 255; | |
data[ ( i * size + j ) * 4 + 3 ] = ( simplex.noise( x + size, y + size ) * 0.5 + 0.5 ) * 255; | |
} | |
} | |
const noiseTexture = new DataTexture( data, size, size ); | |
noiseTexture.wrapS = RepeatWrapping; | |
noiseTexture.wrapT = RepeatWrapping; | |
noiseTexture.needsUpdate = true; | |
return noiseTexture; | |
} | |
/** | |
* TSL function for creating a denoise effect. | |
* | |
* @function | |
* @param {Node} node - The node that represents the input of the effect (e.g. AO). | |
* @param {Node<float>} depthNode - A node that represents the scene's depth. | |
* @param {Node<vec3>?} normalNode - A node that represents the scene's normals. | |
* @param {Camera} camera - The camera the scene is rendered with. | |
* @returns {DenoiseNode} | |
*/ | |
export const denoise = ( node, depthNode, normalNode, camera ) => nodeObject( new DenoiseNode( convertToTexture( node ), nodeObject( depthNode ), nodeObject( normalNode ), camera ) ); | |