Spaces:
Running
Running
import { Vector2, TempNode } from 'three/webgpu'; | |
import { nodeObject, Fn, uniformArray, select, float, NodeUpdateType, uv, dot, clamp, uniform, convertToTexture, smoothstep, bool, vec2, vec3, If, Loop, max, min, Break, abs } from 'three/tsl'; | |
/** @module FXAANode **/ | |
/** | |
* Post processing node for applying FXAA. This node requires sRGB input | |
* so tone mapping and color space conversion must happen before the anti-aliasing. | |
* | |
* @augments TempNode | |
*/ | |
class FXAANode extends TempNode { | |
static get type() { | |
return 'FXAANode'; | |
} | |
/** | |
* Constructs a new FXAA node. | |
* | |
* @param {TextureNode} textureNode - The texture node that represents the input of the effect. | |
*/ | |
constructor( textureNode ) { | |
super( 'vec4' ); | |
/** | |
* The texture node that represents the input of the effect. | |
* | |
* @type {TextureNode} | |
*/ | |
this.textureNode = textureNode; | |
/** | |
* The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node updates | |
* its internal uniforms once per frame in `updateBefore()`. | |
* | |
* @type {String} | |
* @default 'frame' | |
*/ | |
this.updateBeforeType = NodeUpdateType.FRAME; | |
/** | |
* A uniform node holding the inverse resolution value. | |
* | |
* @private | |
* @type {UniformNode<vec2>} | |
*/ | |
this._invSize = uniform( new Vector2() ); | |
} | |
/** | |
* This method is used to update the effect's uniforms once per frame. | |
* | |
* @param {NodeFrame} frame - The current node frame. | |
*/ | |
updateBefore( /* frame */ ) { | |
const map = this.textureNode.value; | |
this._invSize.value.set( 1 / map.image.width, 1 / map.image.height ); | |
} | |
/** | |
* This method is used to setup the effect's TSL code. | |
* | |
* @param {NodeBuilder} builder - The current node builder. | |
* @return {ShaderCallNodeInternal} | |
*/ | |
setup( /* builder */ ) { | |
const textureNode = this.textureNode.bias( - 100 ); | |
const uvNode = textureNode.uvNode || uv(); | |
const EDGE_STEP_COUNT = float( 6 ); | |
const EDGE_GUESS = float( 8.0 ); | |
const EDGE_STEPS = uniformArray( [ 1.0, 1.5, 2.0, 2.0, 2.0, 4.0 ] ); | |
const _ContrastThreshold = float( 0.0312 ); | |
const _RelativeThreshold = float( 0.063 ); | |
const _SubpixelBlending = float( 1.0 ); | |
const Sample = Fn( ( [ uv ] ) => { | |
return textureNode.sample( uv ); | |
} ); | |
const SampleLuminance = Fn( ( [ uv ] ) => { | |
return dot( Sample( uv ).rgb, vec3( 0.3, 0.59, 0.11 ) ); | |
} ); | |
const SampleLuminanceOffset = Fn( ( [ texSize, uv, uOffset, vOffset ] ) => { | |
const shiftedUv = uv.add( texSize.mul( vec2( uOffset, vOffset ) ) ); | |
return SampleLuminance( shiftedUv ); | |
} ); | |
const ShouldSkipPixel = ( l ) => { | |
const threshold = max( _ContrastThreshold, _RelativeThreshold.mul( l.highest ) ); | |
return l.contrast.lessThan( threshold ); | |
}; | |
const SampleLuminanceNeighborhood = ( texSize, uv ) => { | |
const m = SampleLuminance( uv ); | |
const n = SampleLuminanceOffset( texSize, uv, 0.0, - 1.0 ); | |
const e = SampleLuminanceOffset( texSize, uv, 1.0, 0.0 ); | |
const s = SampleLuminanceOffset( texSize, uv, 0.0, 1.0 ); | |
const w = SampleLuminanceOffset( texSize, uv, - 1.0, 0.0 ); | |
const ne = SampleLuminanceOffset( texSize, uv, 1.0, - 1.0 ); | |
const nw = SampleLuminanceOffset( texSize, uv, - 1.0, - 1.0 ); | |
const se = SampleLuminanceOffset( texSize, uv, 1.0, 1.0 ); | |
const sw = SampleLuminanceOffset( texSize, uv, - 1.0, 1.0 ); | |
const highest = max( max( max( max( s, e ), n ), w ), m ); | |
const lowest = min( min( min( min( s, e ), n ), w ), m ); | |
const contrast = highest.sub( lowest ); | |
return { m, n, e, s, w, ne, nw, se, sw, highest, lowest, contrast }; | |
}; | |
const DeterminePixelBlendFactor = ( l ) => { | |
let f = float( 2.0 ).mul( l.s.add( l.e ).add( l.n ).add( l.w ) ); | |
f = f.add( l.se.add( l.sw ).add( l.ne ).add( l.nw ) ); | |
f = f.mul( 1.0 / 12.0 ); | |
f = abs( f.sub( l.m ) ); | |
f = clamp( f.div( max( l.contrast, 0 ) ), 0.0, 1.0 ); | |
const blendFactor = smoothstep( 0.0, 1.0, f ); | |
return blendFactor.mul( blendFactor ).mul( _SubpixelBlending ); | |
}; | |
const DetermineEdge = ( texSize, l ) => { | |
const horizontal = | |
abs( l.s.add( l.n ).sub( l.m.mul( 2.0 ) ) ).mul( 2.0 ).add( | |
abs( l.se.add( l.ne ).sub( l.e.mul( 2.0 ) ) ).add( | |
abs( l.sw.add( l.nw ).sub( l.w.mul( 2.0 ) ) ) | |
) | |
); | |
const vertical = | |
abs( l.e.add( l.w ).sub( l.m.mul( 2.0 ) ) ).mul( 2.0 ).add( | |
abs( l.se.add( l.sw ).sub( l.s.mul( 2.0 ) ) ).add( | |
abs( l.ne.add( l.nw ).sub( l.n.mul( 2.0 ) ) ) | |
) | |
); | |
const isHorizontal = horizontal.greaterThanEqual( vertical ); | |
const pLuminance = select( isHorizontal, l.s, l.e ); | |
const nLuminance = select( isHorizontal, l.n, l.w ); | |
const pGradient = abs( pLuminance.sub( l.m ) ); | |
const nGradient = abs( nLuminance.sub( l.m ) ); | |
const pixelStep = select( isHorizontal, texSize.y, texSize.x ).toVar(); | |
const oppositeLuminance = float().toVar(); | |
const gradient = float().toVar(); | |
If( pGradient.lessThan( nGradient ), () => { | |
pixelStep.assign( pixelStep.negate() ); | |
oppositeLuminance.assign( nLuminance ); | |
gradient.assign( nGradient ); | |
} ).Else( () => { | |
oppositeLuminance.assign( pLuminance ); | |
gradient.assign( pGradient ); | |
} ); | |
return { isHorizontal, pixelStep, oppositeLuminance, gradient }; | |
}; | |
const DetermineEdgeBlendFactor = ( texSize, l, e, uv ) => { | |
const uvEdge = uv.toVar(); | |
const edgeStep = vec2().toVar(); | |
If( e.isHorizontal, () => { | |
uvEdge.y.addAssign( e.pixelStep.mul( 0.5 ) ); | |
edgeStep.assign( vec2( texSize.x, 0.0 ) ); | |
} ).Else( () => { | |
uvEdge.x.addAssign( e.pixelStep.mul( 0.5 ) ); | |
edgeStep.assign( vec2( 0.0, texSize.y ) ); | |
} ); | |
const edgeLuminance = l.m.add( e.oppositeLuminance ).mul( 0.5 ); | |
const gradientThreshold = e.gradient.mul( 0.25 ); | |
const puv = uvEdge.add( edgeStep.mul( EDGE_STEPS.element( 0 ) ) ).toVar(); | |
const pLuminanceDelta = SampleLuminance( puv ).sub( edgeLuminance ).toVar(); | |
const pAtEnd = abs( pLuminanceDelta ).greaterThanEqual( gradientThreshold ).toVar(); | |
Loop( { start: 1, end: EDGE_STEP_COUNT }, ( { i } ) => { | |
If( pAtEnd, () => { | |
Break(); | |
} ); | |
puv.addAssign( edgeStep.mul( EDGE_STEPS.element( i ) ) ); | |
pLuminanceDelta.assign( SampleLuminance( puv ).sub( edgeLuminance ) ); | |
pAtEnd.assign( abs( pLuminanceDelta ).greaterThanEqual( gradientThreshold ) ); | |
} ); | |
If( pAtEnd.not(), () => { | |
puv.addAssign( edgeStep.mul( EDGE_GUESS ) ); | |
} ); | |
const nuv = uvEdge.sub( edgeStep.mul( EDGE_STEPS.element( 0 ) ) ).toVar(); | |
const nLuminanceDelta = SampleLuminance( nuv ).sub( edgeLuminance ).toVar(); | |
const nAtEnd = abs( nLuminanceDelta ).greaterThanEqual( gradientThreshold ).toVar(); | |
Loop( { start: 1, end: EDGE_STEP_COUNT }, ( { i } ) => { | |
If( nAtEnd, () => { | |
Break(); | |
} ); | |
nuv.subAssign( edgeStep.mul( EDGE_STEPS.element( i ) ) ); | |
nLuminanceDelta.assign( SampleLuminance( nuv ).sub( edgeLuminance ) ); | |
nAtEnd.assign( abs( nLuminanceDelta ).greaterThanEqual( gradientThreshold ) ); | |
} ); | |
If( nAtEnd.not(), () => { | |
nuv.subAssign( edgeStep.mul( EDGE_GUESS ) ); | |
} ); | |
const pDistance = float().toVar(); | |
const nDistance = float().toVar(); | |
If( e.isHorizontal, () => { | |
pDistance.assign( puv.x.sub( uv.x ) ); | |
nDistance.assign( uv.x.sub( nuv.x ) ); | |
} ).Else( () => { | |
pDistance.assign( puv.y.sub( uv.y ) ); | |
nDistance.assign( uv.y.sub( nuv.y ) ); | |
} ); | |
const shortestDistance = float().toVar(); | |
const deltaSign = bool().toVar(); | |
If( pDistance.lessThanEqual( nDistance ), () => { | |
shortestDistance.assign( pDistance ); | |
deltaSign.assign( pLuminanceDelta.greaterThanEqual( 0.0 ) ); | |
} ).Else( () => { | |
shortestDistance.assign( nDistance ); | |
deltaSign.assign( nLuminanceDelta.greaterThanEqual( 0.0 ) ); | |
} ); | |
const blendFactor = float().toVar(); | |
If( deltaSign.equal( l.m.sub( edgeLuminance ).greaterThanEqual( 0.0 ) ), () => { | |
blendFactor.assign( 0.0 ); | |
} ).Else( () => { | |
blendFactor.assign( float( 0.5 ).sub( shortestDistance.div( pDistance.add( nDistance ) ) ) ); | |
} ); | |
return blendFactor; | |
}; | |
const ApplyFXAA = Fn( ( [ uv, texSize ] ) => { | |
const luminance = SampleLuminanceNeighborhood( texSize, uv ); | |
If( ShouldSkipPixel( luminance ), () => { | |
return Sample( uv ); | |
} ); | |
const pixelBlend = DeterminePixelBlendFactor( luminance ); | |
const edge = DetermineEdge( texSize, luminance ); | |
const edgeBlend = DetermineEdgeBlendFactor( texSize, luminance, edge, uv ); | |
const finalBlend = max( pixelBlend, edgeBlend ); | |
const finalUv = uv.toVar(); | |
If( edge.isHorizontal, () => { | |
finalUv.y.addAssign( edge.pixelStep.mul( finalBlend ) ); | |
} ).Else( () => { | |
finalUv.x.addAssign( edge.pixelStep.mul( finalBlend ) ); | |
} ); | |
return Sample( finalUv ); | |
} ).setLayout( { | |
name: 'FxaaPixelShader', | |
type: 'vec4', | |
inputs: [ | |
{ name: 'uv', type: 'vec2' }, | |
{ name: 'texSize', type: 'vec2' }, | |
] | |
} ); | |
const fxaa = Fn( () => { | |
return ApplyFXAA( uvNode, this._invSize ); | |
} ); | |
const outputNode = fxaa(); | |
return outputNode; | |
} | |
} | |
export default FXAANode; | |
/** | |
* TSL function for creating a FXAA node for anti-aliasing via post processing. | |
* | |
* @function | |
* @param {Node<vec4>} node - The node that represents the input of the effect. | |
* @returns {FXAANode} | |
*/ | |
export const fxaa = ( node ) => nodeObject( new FXAANode( convertToTexture( node ) ) ); | |