Spaces:
Running
on
L40S
Running
on
L40S
File size: 32,493 Bytes
c8970fa 37a6639 c8970fa f09566f c8970fa 7fe48db 37a6639 90ccabd 56c6949 90ccabd 56c6949 90ccabd 82b1c1d 90ccabd c7ffa18 90ccabd 56c6949 25f2f35 56c6949 90ccabd 37a6639 c8970fa 37a6639 7fe48db 37a6639 25f2f35 37a6639 c7ffa18 37a6639 c7ffa18 37a6639 c7ffa18 37a6639 90ccabd 9b33cce 37a6639 c8970fa f09566f 596aa42 f09566f c8970fa 37a6639 85db601 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa c7ffa18 37a6639 c7ffa18 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 ef838a8 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa 68b4f78 55565fe c8970fa 37a6639 c8970fa 37a6639 c8970fa 37a6639 c8970fa ef838a8 c8970fa ef838a8 55565fe c8970fa 55565fe c8970fa 37a6639 c8970fa ea30e1a ed51b56 ea30e1a c8970fa 37a6639 c8970fa 37a6639 c8970fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 |
import gradio as gr
import os
import sys
import tempfile
import shutil
import spaces
from pathlib import Path
import torch
import logging
from huggingface_hub import snapshot_download
import math
import random
import librosa
import numpy as np
import torch.nn as nn
from tqdm import tqdm
from functools import partial
from datetime import datetime
import torchvision.transforms as TT
from transformers import Wav2Vec2FeatureExtractor
import torchvision.transforms as transforms
import torch.nn.functional as F
from glob import glob
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Constants
MODELS_DIR = Path(os.environ.get('MODELS_DIR', 'pretrained_models'))
DEFAULT_CONFIG_PATH = "configs/inference_1.3B.yaml"
# Import args_config module first
import OmniAvatar.utils.args_config
# Create and set global args before any other OmniAvatar imports
class Args:
def __init__(self):
self.rank = 0
self.world_size = 1
self.local_rank = 0
self.device = 'cuda:0'
self.num_nodes = 1
self.dtype = 'bf16'
self.exp_path = str(MODELS_DIR / "OmniAvatar-1.3B")
self.dit_path = str(MODELS_DIR / "Wan2.1-T2V-1.3B/diffusion_pytorch_model.safetensors")
self.text_encoder_path = str(MODELS_DIR / "Wan2.1-T2V-1.3B/models_t5_umt5-xxl-enc-bf16.pth")
self.vae_path = str(MODELS_DIR / "Wan2.1-T2V-1.3B/Wan2.1_VAE.pth")
self.wav2vec_path = str(MODELS_DIR / "wav2vec2-base-960h")
self.train_architecture = 'lora'
self.lora_rank = 128
self.lora_alpha = 64.0
self.lora_target_modules = 'q,k,v,o,ffn.0,ffn.2'
self.init_lora_weights = 'kaiming'
self.sp_size = 1
self.num_persistent_param_in_dit = None
self.use_fsdp = False
self.i2v = True
self.use_audio = True
self.random_prefix_frames = True
self.overlap_frame = 13
self.num_steps = 20
self.negative_prompt = 'Vivid color tones, background/camera moving quickly, screen switching, subtitles and special effects, mutation, overexposed, static, blurred details, subtitles, style, work, painting, image, still, overall grayish, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn face, deformed, disfigured, malformed limbs, fingers merging, motionless image, chaotic background, three legs, crowded background with many people, walking backward'
self.guidance_scale = 4.5
self.audio_scale = 0
self.max_tokens = 30000
self.sample_rate = 16000
self.fps = 25
self.max_hw = 720
self.tea_cache_l1_thresh = 0
self.image_sizes_720 = [[400, 720], [720, 720], [720, 400]]
self.image_sizes_1280 = [[720, 720], [528, 960], [960, 528], [720, 1280], [1280, 720]]
self.seq_len = 200
self.infer = True
self.debug = False
self.model_config = None
def __contains__(self, key):
"""Support 'in' operator for checking if attribute exists"""
return hasattr(self, key)
def __iter__(self):
"""Make the Args object iterable over its attributes"""
return iter(self.__dict__)
def keys(self):
"""Return the attribute names"""
return self.__dict__.keys()
def __getitem__(self, key):
"""Support dictionary-style access"""
return getattr(self, key)
# Set the global args before any other OmniAvatar imports
OmniAvatar.utils.args_config.args = Args()
# Now we can safely import OmniAvatar modules
from OmniAvatar.utils.args_config import parse_args
from OmniAvatar.utils.io_utils import load_state_dict
from peft import LoraConfig, inject_adapter_in_model
from OmniAvatar.models.model_manager import ModelManager
from OmniAvatar.wan_video import WanVideoPipeline
from OmniAvatar.utils.io_utils import save_video_as_grid_and_mp4
import torch.distributed as dist
from OmniAvatar.utils.audio_preprocess import add_silence_to_audio_ffmpeg
from OmniAvatar.distributed.fsdp import shard_model
def set_seed(seed: int = 42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def download_models():
"""Download required models if they don't exist"""
models_to_download = [
{
"repo_id": "Wan-AI/Wan2.1-T2V-1.3B",
"local_dir": MODELS_DIR / "Wan2.1-T2V-1.3B",
"name": "Wan2.1-T2V-1.3B base model"
},
{
"repo_id": "OmniAvatar/OmniAvatar-1.3B",
"local_dir": MODELS_DIR / "OmniAvatar-1.3B",
"name": "OmniAvatar-1.3B LoRA weights"
},
{
"repo_id": "facebook/wav2vec2-base-960h",
"local_dir": MODELS_DIR / "wav2vec2-base-960h",
"name": "Wav2Vec2 audio encoder"
}
]
# Create models directory if it doesn't exist
MODELS_DIR.mkdir(exist_ok=True)
for model in models_to_download:
local_dir = model["local_dir"]
# Check if model already exists
if local_dir.exists() and any(local_dir.iterdir()):
logger.info(f"{model['name']} already exists at {local_dir}")
continue
logger.info(f"Downloading {model['name']} from {model['repo_id']}...")
try:
snapshot_download(
repo_id=model["repo_id"],
local_dir=str(local_dir),
local_dir_use_symlinks=False,
resume_download=True
)
logger.info(f"Successfully downloaded {model['name']}")
except Exception as e:
logger.error(f"Failed to download {model['name']}: {str(e)}")
raise gr.Error(f"Failed to download {model['name']}: {str(e)}")
# Utility functions from inference.py
def match_size(image_size, h, w):
ratio_ = 9999
size_ = 9999
select_size = None
for image_s in image_size:
ratio_tmp = abs(image_s[0] / image_s[1] - h / w)
size_tmp = abs(max(image_s) - max(w, h))
if ratio_tmp < ratio_:
ratio_ = ratio_tmp
size_ = size_tmp
select_size = image_s
if ratio_ == ratio_tmp:
if size_ == size_tmp:
select_size = image_s
return select_size
def resize_pad(image, ori_size, tgt_size):
h, w = ori_size
scale_ratio = max(tgt_size[0] / h, tgt_size[1] / w)
scale_h = int(h * scale_ratio)
scale_w = int(w * scale_ratio)
image = transforms.Resize(size=[scale_h, scale_w])(image)
padding_h = tgt_size[0] - scale_h
padding_w = tgt_size[1] - scale_w
pad_top = padding_h // 2
pad_bottom = padding_h - pad_top
pad_left = padding_w // 2
pad_right = padding_w - pad_left
image = F.pad(image, (pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0)
return image
class WanInferencePipeline(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if args.dtype=='bf16':
self.dtype = torch.bfloat16
elif args.dtype=='fp16':
self.dtype = torch.float16
else:
self.dtype = torch.float32
self.pipe = self.load_model()
if args.i2v:
chained_trainsforms = []
chained_trainsforms.append(TT.ToTensor())
self.transform = TT.Compose(chained_trainsforms)
if args.use_audio:
from OmniAvatar.models.wav2vec import Wav2VecModel
self.wav_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
str(MODELS_DIR / "wav2vec2-base-960h")
)
self.audio_encoder = Wav2VecModel.from_pretrained(str(MODELS_DIR / "wav2vec2-base-960h"), local_files_only=True).to(device=self.device)
self.audio_encoder.feature_extractor._freeze_parameters()
def load_model(self):
# Initialize for single GPU
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
os.environ['RANK'] = '0'
os.environ['WORLD_SIZE'] = '1'
dist.init_process_group(backend="nccl", init_method="env://")
from xfuser.core.distributed import (initialize_model_parallel,
init_distributed_environment)
init_distributed_environment(rank=0, world_size=1)
initialize_model_parallel(
sequence_parallel_degree=self.args.sp_size,
ring_degree=1,
ulysses_degree=self.args.sp_size,
)
torch.cuda.set_device(0)
ckpt_path = f'{self.args.exp_path}/pytorch_model.pt'
assert os.path.exists(ckpt_path), f"pytorch_model.pt not found in {self.args.exp_path}"
if self.args.train_architecture == 'lora':
self.args.pretrained_lora_path = pretrained_lora_path = ckpt_path
else:
resume_path = ckpt_path
self.step = 0
# Load models
model_manager = ModelManager(device="cpu", infer=True)
# For OmniAvatar, we need to override the model config to use in_dim=33
# This is because OmniAvatar uses additional channels for audio/image conditioning
if self.args.train_architecture == "lora" and "OmniAvatar" in self.args.exp_path:
# Set model_config in args to override the default
self.args.model_config = {
"in_dim": 33 # 16 (base) + 17 (additional channels for OmniAvatar)
}
model_manager.load_models(
[
self.args.dit_path.split(","),
self.args.text_encoder_path,
self.args.vae_path
],
torch_dtype=self.dtype,
device='cpu',
)
pipe = WanVideoPipeline.from_model_manager(model_manager,
torch_dtype=self.dtype,
device=str(self.device),
use_usp=True if self.args.sp_size > 1 else False,
infer=True)
if self.args.train_architecture == "lora":
logger.info(f'Use LoRA: lora rank: {self.args.lora_rank}, lora alpha: {self.args.lora_alpha}')
self.add_lora_to_model(
pipe.denoising_model(),
lora_rank=self.args.lora_rank,
lora_alpha=self.args.lora_alpha,
lora_target_modules=self.args.lora_target_modules,
init_lora_weights=self.args.init_lora_weights,
pretrained_lora_path=pretrained_lora_path,
)
else:
missing_keys, unexpected_keys = pipe.denoising_model().load_state_dict(load_state_dict(resume_path), strict=True)
logger.info(f"load from {resume_path}, {len(missing_keys)} missing keys, {len(unexpected_keys)} unexpected keys")
pipe.requires_grad_(False)
pipe.eval()
pipe.enable_vram_management(num_persistent_param_in_dit=self.args.num_persistent_param_in_dit)
if self.args.use_fsdp:
shard_fn = partial(shard_model, device_id=self.device)
pipe.dit = shard_fn(pipe.dit)
return pipe
def add_lora_to_model(self, model, lora_rank=4, lora_alpha=4, lora_target_modules="q,k,v,o,ffn.0,ffn.2", init_lora_weights="kaiming", pretrained_lora_path=None, state_dict_converter=None):
self.lora_alpha = lora_alpha
if init_lora_weights == "kaiming":
init_lora_weights = True
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights=init_lora_weights,
target_modules=lora_target_modules.split(","),
)
model = inject_adapter_in_model(lora_config, model)
if pretrained_lora_path is not None:
state_dict = load_state_dict(pretrained_lora_path)
if state_dict_converter is not None:
state_dict = state_dict_converter(state_dict)
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
all_keys = [i for i, _ in model.named_parameters()]
num_updated_keys = len(all_keys) - len(missing_keys)
num_unexpected_keys = len(unexpected_keys)
logger.info(f"{num_updated_keys} parameters are loaded from {pretrained_lora_path}. {num_unexpected_keys} parameters are unexpected.")
def forward(self, prompt,
image_path=None,
audio_path=None,
seq_len=101,
height=720,
width=720,
overlap_frame=None,
num_steps=None,
negative_prompt=None,
guidance_scale=None,
audio_scale=None,
progress_callback=None):
overlap_frame = overlap_frame if overlap_frame is not None else self.args.overlap_frame
num_steps = num_steps if num_steps is not None else self.args.num_steps
negative_prompt = negative_prompt if negative_prompt is not None else self.args.negative_prompt
guidance_scale = guidance_scale if guidance_scale is not None else self.args.guidance_scale
audio_scale = audio_scale if audio_scale is not None else self.args.audio_scale
if image_path is not None:
from PIL import Image
image = Image.open(image_path).convert("RGB")
image = self.transform(image).unsqueeze(0).to(self.device)
_, _, h, w = image.shape
select_size = match_size(getattr(self.args, f'image_sizes_{self.args.max_hw}'), h, w)
image = resize_pad(image, (h, w), select_size)
image = image * 2.0 - 1.0
image = image[:, :, None]
else:
image = None
select_size = [height, width]
L = int(self.args.max_tokens * 16 * 16 * 4 / select_size[0] / select_size[1])
L = L // 4 * 4 + 1 if L % 4 != 0 else L - 3 # video frames
T = (L + 3) // 4 # latent frames
if self.args.i2v:
if self.args.random_prefix_frames:
fixed_frame = overlap_frame
assert fixed_frame % 4 == 1
else:
fixed_frame = 1
prefix_lat_frame = (3 + fixed_frame) // 4
first_fixed_frame = 1
else:
fixed_frame = 0
prefix_lat_frame = 0
first_fixed_frame = 0
if audio_path is not None and self.args.use_audio:
audio, sr = librosa.load(audio_path, sr=self.args.sample_rate)
input_values = np.squeeze(
self.wav_feature_extractor(audio, sampling_rate=16000).input_values
)
input_values = torch.from_numpy(input_values).float().to(device=self.device)
ori_audio_len = audio_len = math.ceil(len(input_values) / self.args.sample_rate * self.args.fps)
input_values = input_values.unsqueeze(0)
# padding audio
if audio_len < L - first_fixed_frame:
audio_len = audio_len + ((L - first_fixed_frame) - audio_len % (L - first_fixed_frame))
elif (audio_len - (L - first_fixed_frame)) % (L - fixed_frame) != 0:
audio_len = audio_len + ((L - fixed_frame) - (audio_len - (L - first_fixed_frame)) % (L - fixed_frame))
input_values = F.pad(input_values, (0, audio_len * int(self.args.sample_rate / self.args.fps) - input_values.shape[1]), mode='constant', value=0)
with torch.no_grad():
hidden_states = self.audio_encoder(input_values, seq_len=audio_len, output_hidden_states=True)
audio_embeddings = hidden_states.last_hidden_state
for mid_hidden_states in hidden_states.hidden_states:
audio_embeddings = torch.cat((audio_embeddings, mid_hidden_states), -1)
seq_len = audio_len
audio_embeddings = audio_embeddings.squeeze(0)
audio_prefix = torch.zeros_like(audio_embeddings[:first_fixed_frame])
else:
audio_embeddings = None
# loop
times = (seq_len - L + first_fixed_frame) // (L-fixed_frame) + 1
if times * (L-fixed_frame) + fixed_frame < seq_len:
times += 1
video = []
image_emb = {}
img_lat = None
if self.args.i2v:
self.pipe.load_models_to_device(['vae'])
img_lat = self.pipe.encode_video(image.to(dtype=self.dtype)).to(self.device)
msk = torch.zeros_like(img_lat.repeat(1, 1, T, 1, 1)[:,:1])
image_cat = img_lat.repeat(1, 1, T, 1, 1)
msk[:, :, 1:] = 1
image_emb["y"] = torch.cat([image_cat, msk], dim=1)
for t in range(times):
logger.info(f"[{t+1}/{times}]")
# Create a sub-progress callback for this iteration
if progress_callback:
def sub_progress_callback(step, total_steps):
# Calculate overall progress including all iterations
iteration_progress = t / times
step_progress = step / total_steps / times
overall_progress = iteration_progress + step_progress
desc = f"Generating segment {t+1}/{times} - Step {step}/{total_steps}"
progress_callback(overall_progress, desc)
else:
sub_progress_callback = None
audio_emb = {}
if t == 0:
overlap = first_fixed_frame
else:
overlap = fixed_frame
image_emb["y"][:, -1:, :prefix_lat_frame] = 0
prefix_overlap = (3 + overlap) // 4
if audio_embeddings is not None:
if t == 0:
audio_tensor = audio_embeddings[
:min(L - overlap, audio_embeddings.shape[0])
]
else:
audio_start = L - first_fixed_frame + (t - 1) * (L - overlap)
audio_tensor = audio_embeddings[
audio_start: min(audio_start + L - overlap, audio_embeddings.shape[0])
]
audio_tensor = torch.cat([audio_prefix, audio_tensor], dim=0)
audio_prefix = audio_tensor[-fixed_frame:]
audio_tensor = audio_tensor.unsqueeze(0).to(device=self.device, dtype=self.dtype)
audio_emb["audio_emb"] = audio_tensor
else:
audio_prefix = None
if image is not None and img_lat is None:
self.pipe.load_models_to_device(['vae'])
img_lat = self.pipe.encode_video(image.to(dtype=self.dtype)).to(self.device)
assert img_lat.shape[2] == prefix_overlap
img_lat = torch.cat([img_lat, torch.zeros_like(img_lat[:, :, :1].repeat(1, 1, T - prefix_overlap, 1, 1))], dim=2)
frames, _, latents = self.pipe.log_video(img_lat, prompt, prefix_overlap, image_emb, audio_emb,
negative_prompt, num_inference_steps=num_steps,
cfg_scale=guidance_scale, audio_cfg_scale=audio_scale if audio_scale is not None else guidance_scale,
return_latent=True,
tea_cache_l1_thresh=self.args.tea_cache_l1_thresh,tea_cache_model_id="Wan2.1-T2V-1.3B",
progress_callback=sub_progress_callback)
img_lat = None
image = (frames[:, -fixed_frame:].clip(0, 1) * 2 - 1).permute(0, 2, 1, 3, 4).contiguous()
if t == 0:
video.append(frames)
else:
video.append(frames[:, overlap:])
video = torch.cat(video, dim=1)
video = video[:, :ori_audio_len + 1]
return video
# Initialize the pipeline globally
inference_pipeline = None
args_global = None
def initialize_inference_pipeline():
global inference_pipeline, args_global
if inference_pipeline is not None:
return inference_pipeline
# Use the global args that was already created
args_global = OmniAvatar.utils.args_config.args
logger.info("Initializing inference pipeline...")
inference_pipeline = WanInferencePipeline(args_global)
logger.info("Inference pipeline initialized successfully")
return inference_pipeline
def get_duration(reference_image,
audio_file,
text_prompt,
seed,
use_random_seed,
num_steps,
guidance_scale,
audio_scale,
overlap_frames,
fps,
silence_duration,
resolution,
progress):
if num_steps > 15:
return 120
else:
return 100
# this task might too long for ZeroGPU maybe,
# but I need to try on a H200 to be sure
@spaces.GPU(duration=get_duration)
def generate_avatar_video(
reference_image,
audio_file,
text_prompt,
seed=None,
use_random_seed=True,
num_steps=20,
guidance_scale=4.5,
audio_scale=None,
overlap_frames=13,
fps=25,
silence_duration=0.3,
resolution="720p",
progress=gr.Progress()
):
"""Generate an avatar video using OmniAvatar"""
try:
progress(0.1, desc="Initializing")
if use_random_seed or seed is None or seed == -1:
seed = random.randint(0, 2147483647)
set_seed(seed)
# Initialize pipeline if needed
pipeline = initialize_inference_pipeline()
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = Path(temp_dir)
progress(0.2, desc="Preparing inputs")
# Copy input files to temp directory
temp_image = temp_path / "input_image.jpeg"
temp_audio = temp_path / "input_audio.mp3"
shutil.copy(reference_image, temp_image)
shutil.copy(audio_file, temp_audio)
# Add silence to audio
if silence_duration > 0:
audio_with_silence = temp_path / "audio_with_silence.wav"
add_silence_to_audio_ffmpeg(str(temp_audio), str(audio_with_silence), silence_duration)
input_audio_path = str(audio_with_silence)
else:
input_audio_path = str(temp_audio)
progress(0.3, desc="Configuring generation parameters")
# Update args for this generation
args_global.seed = seed
args_global.num_steps = num_steps
args_global.guidance_scale = guidance_scale
args_global.audio_scale = audio_scale if audio_scale is not None and audio_scale > 0 else 0
args_global.overlap_frame = overlap_frames
args_global.fps = fps
args_global.silence_duration_s = silence_duration
args_global.max_hw = 720 if resolution == "480p" else 1280
progress(0.4, desc="Running OmniAvatar generation")
# Create a progress callback that maps pipeline progress to Gradio progress
def pipeline_progress_callback(pipeline_progress, desc):
# Map pipeline progress (0-1) to Gradio progress range (0.4-0.8)
gradio_progress = 0.4 + (pipeline_progress * 0.4)
progress(gradio_progress, desc=desc)
# Generate video
video = pipeline(
prompt=text_prompt,
image_path=str(temp_image),
audio_path=input_audio_path,
seq_len=args_global.seq_len,
progress_callback=pipeline_progress_callback
)
progress(0.8, desc="Saving video")
# Create output directory in temp folder
output_dir = temp_path / "output"
output_dir.mkdir(exist_ok=True)
# Add audio offset for final output
audio_with_offset = temp_path / "audio_with_offset.wav"
add_silence_to_audio_ffmpeg(str(temp_audio), str(audio_with_offset), 1.0 / fps + silence_duration)
# Save video
save_video_as_grid_and_mp4(
video,
str(output_dir),
fps,
prompt=text_prompt,
audio_path=str(audio_with_offset) if args_global.use_audio else None,
prefix=f'result_000'
)
progress(0.9, desc="Finalizing")
# Find the generated video file
generated_videos = list(output_dir.glob("result_000_*.mp4"))
if not generated_videos:
# Also check for result_000.mp4 (without suffix)
generated_videos = list(output_dir.glob("result_000.mp4"))
if not generated_videos:
raise gr.Error("No video file was generated")
# Get the first (and should be only) video
latest_video = generated_videos[0]
# Create a persistent temporary file for Gradio
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_output:
output_path = tmp_output.name
# Copy the generated video to the persistent temp file
shutil.copy(latest_video, output_path)
progress(1.0, desc="Generation complete")
logger.info(f"Video saved to: {output_path}")
return output_path, seed
except Exception as e:
logger.error(f"Error generating video: {str(e)}", exc_info=True)
raise gr.Error(f"Error generating video: {str(e)}")
# Initialize models on module import (for Hugging Face Spaces)
logger.info("Initializing OmniAvatar...")
logger.info("Checking and downloading required models...")
download_models()
logger.info("Model initialization complete")
# Create the Gradio interface
with gr.Blocks(title="OmniAvatar - Lipsynced Avatar Video Generation") as app:
gr.Markdown("""
# π OmniAvatar - Lipsynced Avatar Video Generation
Generate videos with lipsynced avatars using a reference image and audio file.
Based on Wan2.1 with OmniAvatar enhancements for audio-driven avatar animation.
Note: this Gradio Space demo uses Wan2.1 1.3B and not Wan 14B.
It takes about 4 minutes to generate a 4s long video (like in the examples), so we recommend you to duplicate this space.
""")
with gr.Row():
with gr.Column(scale=1):
# Input components
reference_image = gr.Image(
label="Reference Avatar Image",
type="filepath",
elem_id="reference_image"
)
audio_file = gr.Audio(
label="Speech Audio File",
type="filepath",
elem_id="audio_file"
)
text_prompt = gr.Textbox(
label="Video Description",
placeholder="Describe the video scene and actions...",
lines=3,
value="A person speaking naturally with subtle facial expressions"
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
use_random_seed = gr.Checkbox(
label="Use random seed",
value=True
)
seed = gr.Slider(
label="Seed (ignored if random seed is checked)",
minimum=0,
maximum=2147483647,
step=1,
value=42
)
resolution = gr.Radio(
label="Resolution",
choices=["480p", "720p"],
value="480p"
)
with gr.Row():
num_steps = gr.Slider(
label="Inference Steps",
minimum=10,
maximum=50,
step=1,
value=15
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.5,
value=4.5
)
with gr.Row():
audio_scale = gr.Slider(
label="Audio Scale (leave 0 to use guidance scale)",
minimum=0.0,
maximum=10.0,
step=0.5,
value=3.0
)
overlap_frames = gr.Slider(
label="Overlap Frames",
minimum=1,
maximum=25,
step=4,
value=13,
info="Must be 1 + 4*n"
)
with gr.Row():
fps = gr.Slider(
label="FPS",
minimum=10,
maximum=30,
step=1,
value=25
)
silence_duration = gr.Slider(
label="Silence Duration (s)",
minimum=0.0,
maximum=2.0,
step=0.1,
value=0.3
)
generate_btn = gr.Button(
"π¬ Generate Avatar Video",
variant="primary"
)
# Add seed output display
seed_output = gr.Number(
label="Seed used",
interactive=False
)
with gr.Column(scale=1):
# Output component
output_video = gr.Video(
label="Generated Avatar Video",
elem_id="output_video"
)
# Examples
gr.Examples(
examples=[
[
"examples/images/demo1.jpg",
"examples/audios/demo1.mp3",
"An arrogant and gloomy wizard explains something in a grave tone"
],
],
inputs=[reference_image, audio_file, text_prompt],
label="Example Inputs"
)
# Connect the generate button
generate_btn.click(
fn=generate_avatar_video,
inputs=[
reference_image,
audio_file,
text_prompt,
seed,
use_random_seed,
num_steps,
guidance_scale,
audio_scale,
overlap_frames,
fps,
silence_duration,
resolution
],
outputs=[output_video, seed_output]
)
gr.Markdown("""
## π Notes
- The reference image should be a clear frontal view of the person
- Audio should be clear speech without background music
- Generation may take several minutes depending on video length
- For best results, use high-quality input images and audio
""")
# Launch the app
if __name__ == "__main__":
app.launch(share=True) |