Spaces:
Running
on
L40S
Running
on
L40S
File size: 6,126 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
from modelscope import snapshot_download
from typing_extensions import Literal, TypeAlias
import os
from diffsynth.extensions.ImageQualityMetric.aesthetic import AestheticScore
from diffsynth.extensions.ImageQualityMetric.imagereward import ImageRewardScore
from diffsynth.extensions.ImageQualityMetric.pickscore import PickScore
from diffsynth.extensions.ImageQualityMetric.clip import CLIPScore
from diffsynth.extensions.ImageQualityMetric.hps import HPScore_v2
from diffsynth.extensions.ImageQualityMetric.mps import MPScore
preference_model_id: TypeAlias = Literal[
"ImageReward",
"Aesthetic",
"PickScore",
"CLIP",
"HPSv2",
"HPSv2.1",
"MPS",
]
model_dict = {
"ImageReward": {
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
"allow_file_pattern": [
"ImageReward/ImageReward.safetensors",
"ImageReward/med_config.json",
"bert-base-uncased/config.json",
"bert-base-uncased/model.safetensors",
"bert-base-uncased/tokenizer.json",
"bert-base-uncased/tokenizer_config.json",
"bert-base-uncased/vocab.txt",
],
"load_path": {
"imagereward": "ImageReward/ImageReward.safetensors",
"med_config": "ImageReward/med_config.json",
"bert_model_path": "bert-base-uncased",
},
"model_class": ImageRewardScore
},
"Aesthetic": {
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
"allow_file_pattern": [
"aesthetic-predictor/sac+logos+ava1-l14-linearMSE.safetensors",
"clip-vit-large-patch14/config.json",
"clip-vit-large-patch14/merges.txt",
"clip-vit-large-patch14/model.safetensors",
"clip-vit-large-patch14/preprocessor_config.json",
"clip-vit-large-patch14/special_tokens_map.json",
"clip-vit-large-patch14/tokenizer.json",
"clip-vit-large-patch14/tokenizer_config.json",
"clip-vit-large-patch14/vocab.json",
],
"load_path": {
"aesthetic_predictor": "aesthetic-predictor/sac+logos+ava1-l14-linearMSE.safetensors",
"clip-large": "clip-vit-large-patch14",
},
"model_class": AestheticScore
},
"PickScore": {
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
"allow_file_pattern": [
"PickScore_v1/*",
"CLIP-ViT-H-14-laion2B-s32B-b79K/config.json",
"CLIP-ViT-H-14-laion2B-s32B-b79K/merges.txt",
"CLIP-ViT-H-14-laion2B-s32B-b79K/preprocessor_config.json",
"CLIP-ViT-H-14-laion2B-s32B-b79K/special_tokens_map.json",
"CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer.json",
"CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer_config.json",
"CLIP-ViT-H-14-laion2B-s32B-b79K/vocab.json",
],
"load_path": {
"pickscore": "PickScore_v1",
"clip": "CLIP-ViT-H-14-laion2B-s32B-b79K",
},
"model_class": PickScore
},
"CLIP": {
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
"allow_file_pattern": [
"CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin",
"bpe_simple_vocab_16e6.txt.gz",
],
"load_path": {
"open_clip": "CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin",
"open_clip_bpe": "bpe_simple_vocab_16e6.txt.gz",
},
"model_class": CLIPScore
},
"HPSv2": {
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
"allow_file_pattern": [
"HPS_v2/HPS_v2_compressed.safetensors",
"bpe_simple_vocab_16e6.txt.gz",
],
"load_path": {
"hpsv2": "HPS_v2/HPS_v2_compressed.safetensors",
"open_clip_bpe": "bpe_simple_vocab_16e6.txt.gz",
},
"model_class": HPScore_v2,
"extra_kwargs": {"model_version": "v2"}
},
"HPSv2.1": {
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
"allow_file_pattern": [
"HPS_v2/HPS_v2.1_compressed.safetensors",
"bpe_simple_vocab_16e6.txt.gz",
],
"load_path": {
"hpsv2.1": "HPS_v2/HPS_v2.1_compressed.safetensors",
"open_clip_bpe": "bpe_simple_vocab_16e6.txt.gz",
},
"model_class": HPScore_v2,
"extra_kwargs": {"model_version": "v21"}
},
"MPS": {
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
"allow_file_pattern": [
"MPS_overall_checkpoint/MPS_overall_checkpoint_diffsynth.safetensors",
"CLIP-ViT-H-14-laion2B-s32B-b79K/config.json",
"CLIP-ViT-H-14-laion2B-s32B-b79K/merges.txt",
"CLIP-ViT-H-14-laion2B-s32B-b79K/preprocessor_config.json",
"CLIP-ViT-H-14-laion2B-s32B-b79K/special_tokens_map.json",
"CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer.json",
"CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer_config.json",
"CLIP-ViT-H-14-laion2B-s32B-b79K/vocab.json",
],
"load_path": {
"mps": "MPS_overall_checkpoint/MPS_overall_checkpoint_diffsynth.safetensors",
"clip": "CLIP-ViT-H-14-laion2B-s32B-b79K",
},
"model_class": MPScore
},
}
def download_preference_model(model_name: preference_model_id, cache_dir="models"):
metadata = model_dict[model_name]
snapshot_download(model_id=metadata["model_id"], allow_file_pattern=metadata["allow_file_pattern"], cache_dir=cache_dir)
load_path = metadata["load_path"]
load_path = {key: os.path.join(cache_dir, metadata["model_id"], path) for key, path in load_path.items()}
return load_path
def load_preference_model(model_name: preference_model_id, device = "cuda", path = None):
model_class = model_dict[model_name]["model_class"]
extra_kwargs = model_dict[model_name].get("extra_kwargs", {})
preference_model = model_class(device=device, path=path, **extra_kwargs)
return preference_model
|