Spaces:
Running
on
L40S
Running
on
L40S
File size: 4,777 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
from typing import List, Union
from PIL import Image
import torch
from .open_clip import create_model_and_transforms, get_tokenizer
from safetensors.torch import load_file
import os
from .config import MODEL_PATHS
class HPScore_v2(torch.nn.Module):
def __init__(self, device: torch.device, path: str = MODEL_PATHS, model_version: str = "v2"):
super().__init__()
"""Initialize the Selector with a model and tokenizer.
Args:
device (torch.device): The device to load the model on.
model_version (str): The version of the model to load. Supports "v2" or "v21". Default is "v2".
"""
self.device = device
if model_version == "v2":
safetensors_path = path.get("hpsv2")
elif model_version == "v21":
safetensors_path = path.get("hpsv2.1")
else:
raise ValueError(f"Unsupported model version: {model_version}. Choose 'v2' or 'v21'.")
# Create model and transforms
model, _, self.preprocess_val = create_model_and_transforms(
"ViT-H-14",
# "laion2B-s32B-b79K",
pretrained=path.get("open_clip"),
precision="amp",
device=device,
jit=False,
force_quick_gelu=False,
force_custom_text=False,
force_patch_dropout=False,
force_image_size=None,
pretrained_image=False,
image_mean=None,
image_std=None,
light_augmentation=True,
aug_cfg={},
output_dict=True,
with_score_predictor=False,
with_region_predictor=False,
)
# Load model weights
try:
state_dict = load_file(safetensors_path)
model.load_state_dict(state_dict)
except Exception as e:
raise ValueError(f"Error loading model weights from {safetensors_path}: {e}")
# Initialize tokenizer and model
self.tokenizer = get_tokenizer("ViT-H-14", path["open_clip_bpe"])
model = model.to(device)
model.eval()
self.model = model
def _calculate_score(self, image: torch.Tensor, prompt: str) -> float:
"""Calculate the HPS score for a single image and prompt.
Args:
image (torch.Tensor): The processed image tensor.
prompt (str): The prompt text.
Returns:
float: The HPS score.
"""
with torch.no_grad():
# Process the prompt
text = self.tokenizer([prompt]).to(device=self.device, non_blocking=True)
# Calculate the HPS score
outputs = self.model(image, text)
image_features, text_features = outputs["image_features"], outputs["text_features"]
logits_per_image = image_features @ text_features.T
hps_score = torch.diagonal(logits_per_image).cpu().numpy()
return hps_score[0].item()
@torch.no_grad()
def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str) -> List[float]:
"""Score the images based on the prompt.
Args:
images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s).
prompt (str): The prompt text.
Returns:
List[float]: List of HPS scores for the images.
"""
try:
if isinstance(images, (str, Image.Image)):
# Single image
if isinstance(images, str):
image = self.preprocess_val(Image.open(images)).unsqueeze(0).to(device=self.device, non_blocking=True)
else:
image = self.preprocess_val(images).unsqueeze(0).to(device=self.device, non_blocking=True)
return [self._calculate_score(image, prompt)]
elif isinstance(images, list):
# Multiple images
scores = []
for one_images in images:
if isinstance(one_images, str):
image = self.preprocess_val(Image.open(one_images)).unsqueeze(0).to(device=self.device, non_blocking=True)
elif isinstance(one_images, Image.Image):
image = self.preprocess_val(one_images).unsqueeze(0).to(device=self.device, non_blocking=True)
else:
raise TypeError("The type of parameter images is illegal.")
scores.append(self._calculate_score(image, prompt))
return scores
else:
raise TypeError("The type of parameter images is illegal.")
except Exception as e:
raise RuntimeError(f"Error in scoring images: {e}")
|