Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
from einops import rearrange, repeat | |
from .tiler import TileWorker2Dto3D | |
class Downsample3D(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int = 3, | |
stride: int = 2, | |
padding: int = 0, | |
compress_time: bool = False, | |
): | |
super().__init__() | |
self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) | |
self.compress_time = compress_time | |
def forward(self, x: torch.Tensor, xq: torch.Tensor) -> torch.Tensor: | |
if self.compress_time: | |
batch_size, channels, frames, height, width = x.shape | |
# (batch_size, channels, frames, height, width) -> (batch_size, height, width, channels, frames) -> (batch_size * height * width, channels, frames) | |
x = x.permute(0, 3, 4, 1, 2).reshape(batch_size * height * width, channels, frames) | |
if x.shape[-1] % 2 == 1: | |
x_first, x_rest = x[..., 0], x[..., 1:] | |
if x_rest.shape[-1] > 0: | |
# (batch_size * height * width, channels, frames - 1) -> (batch_size * height * width, channels, (frames - 1) // 2) | |
x_rest = torch.nn.functional.avg_pool1d(x_rest, kernel_size=2, stride=2) | |
x = torch.cat([x_first[..., None], x_rest], dim=-1) | |
# (batch_size * height * width, channels, (frames // 2) + 1) -> (batch_size, height, width, channels, (frames // 2) + 1) -> (batch_size, channels, (frames // 2) + 1, height, width) | |
x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2) | |
else: | |
# (batch_size * height * width, channels, frames) -> (batch_size * height * width, channels, frames // 2) | |
x = torch.nn.functional.avg_pool1d(x, kernel_size=2, stride=2) | |
# (batch_size * height * width, channels, frames // 2) -> (batch_size, height, width, channels, frames // 2) -> (batch_size, channels, frames // 2, height, width) | |
x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2) | |
# Pad the tensor | |
pad = (0, 1, 0, 1) | |
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
batch_size, channels, frames, height, width = x.shape | |
# (batch_size, channels, frames, height, width) -> (batch_size, frames, channels, height, width) -> (batch_size * frames, channels, height, width) | |
x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channels, height, width) | |
x = self.conv(x) | |
# (batch_size * frames, channels, height, width) -> (batch_size, frames, channels, height, width) -> (batch_size, channels, frames, height, width) | |
x = x.reshape(batch_size, frames, x.shape[1], x.shape[2], x.shape[3]).permute(0, 2, 1, 3, 4) | |
return x | |
class Upsample3D(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int = 3, | |
stride: int = 1, | |
padding: int = 1, | |
compress_time: bool = False, | |
) -> None: | |
super().__init__() | |
self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) | |
self.compress_time = compress_time | |
def forward(self, inputs: torch.Tensor, xq: torch.Tensor) -> torch.Tensor: | |
if self.compress_time: | |
if inputs.shape[2] > 1 and inputs.shape[2] % 2 == 1: | |
# split first frame | |
x_first, x_rest = inputs[:, :, 0], inputs[:, :, 1:] | |
x_first = torch.nn.functional.interpolate(x_first, scale_factor=2.0) | |
x_rest = torch.nn.functional.interpolate(x_rest, scale_factor=2.0) | |
x_first = x_first[:, :, None, :, :] | |
inputs = torch.cat([x_first, x_rest], dim=2) | |
elif inputs.shape[2] > 1: | |
inputs = torch.nn.functional.interpolate(inputs, scale_factor=2.0) | |
else: | |
inputs = inputs.squeeze(2) | |
inputs = torch.nn.functional.interpolate(inputs, scale_factor=2.0) | |
inputs = inputs[:, :, None, :, :] | |
else: | |
# only interpolate 2D | |
b, c, t, h, w = inputs.shape | |
inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) | |
inputs = torch.nn.functional.interpolate(inputs, scale_factor=2.0) | |
inputs = inputs.reshape(b, t, c, *inputs.shape[2:]).permute(0, 2, 1, 3, 4) | |
b, c, t, h, w = inputs.shape | |
inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) | |
inputs = self.conv(inputs) | |
inputs = inputs.reshape(b, t, *inputs.shape[1:]).permute(0, 2, 1, 3, 4) | |
return inputs | |
class CogVideoXSpatialNorm3D(torch.nn.Module): | |
def __init__(self, f_channels, zq_channels, groups): | |
super().__init__() | |
self.norm_layer = torch.nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True) | |
self.conv_y = torch.nn.Conv3d(zq_channels, f_channels, kernel_size=1, stride=1) | |
self.conv_b = torch.nn.Conv3d(zq_channels, f_channels, kernel_size=1, stride=1) | |
def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor: | |
if f.shape[2] > 1 and f.shape[2] % 2 == 1: | |
f_first, f_rest = f[:, :, :1], f[:, :, 1:] | |
f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:] | |
z_first, z_rest = zq[:, :, :1], zq[:, :, 1:] | |
z_first = torch.nn.functional.interpolate(z_first, size=f_first_size) | |
z_rest = torch.nn.functional.interpolate(z_rest, size=f_rest_size) | |
zq = torch.cat([z_first, z_rest], dim=2) | |
else: | |
zq = torch.nn.functional.interpolate(zq, size=f.shape[-3:]) | |
norm_f = self.norm_layer(f) | |
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) | |
return new_f | |
class Resnet3DBlock(torch.nn.Module): | |
def __init__(self, in_channels, out_channels, spatial_norm_dim, groups, eps=1e-6, use_conv_shortcut=False): | |
super().__init__() | |
self.nonlinearity = torch.nn.SiLU() | |
if spatial_norm_dim is None: | |
self.norm1 = torch.nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps) | |
self.norm2 = torch.nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps) | |
else: | |
self.norm1 = CogVideoXSpatialNorm3D(in_channels, spatial_norm_dim, groups) | |
self.norm2 = CogVideoXSpatialNorm3D(out_channels, spatial_norm_dim, groups) | |
self.conv1 = CachedConv3d(in_channels, out_channels, kernel_size=3, padding=(0, 1, 1)) | |
self.conv2 = CachedConv3d(out_channels, out_channels, kernel_size=3, padding=(0, 1, 1)) | |
if in_channels != out_channels: | |
if use_conv_shortcut: | |
self.conv_shortcut = CachedConv3d(in_channels, out_channels, kernel_size=3, padding=(0, 1, 1)) | |
else: | |
self.conv_shortcut = torch.nn.Conv3d(in_channels, out_channels, kernel_size=1) | |
else: | |
self.conv_shortcut = lambda x: x | |
def forward(self, hidden_states, zq): | |
residual = hidden_states | |
hidden_states = self.norm1(hidden_states, zq) if isinstance(self.norm1, CogVideoXSpatialNorm3D) else self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
hidden_states = self.norm2(hidden_states, zq) if isinstance(self.norm2, CogVideoXSpatialNorm3D) else self.norm2(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
hidden_states = hidden_states + self.conv_shortcut(residual) | |
return hidden_states | |
class CachedConv3d(torch.nn.Conv3d): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): | |
super().__init__(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) | |
self.cached_tensor = None | |
def clear_cache(self): | |
self.cached_tensor = None | |
def forward(self, input: torch.Tensor, use_cache = True) -> torch.Tensor: | |
if use_cache: | |
if self.cached_tensor is None: | |
self.cached_tensor = torch.concat([input[:, :, :1]] * 2, dim=2) | |
input = torch.concat([self.cached_tensor, input], dim=2) | |
self.cached_tensor = input[:, :, -2:] | |
return super().forward(input) | |
class CogVAEDecoder(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.scaling_factor = 0.7 | |
self.conv_in = CachedConv3d(16, 512, kernel_size=3, stride=1, padding=(0, 1, 1)) | |
self.blocks = torch.nn.ModuleList([ | |
Resnet3DBlock(512, 512, 16, 32), | |
Resnet3DBlock(512, 512, 16, 32), | |
Resnet3DBlock(512, 512, 16, 32), | |
Resnet3DBlock(512, 512, 16, 32), | |
Resnet3DBlock(512, 512, 16, 32), | |
Resnet3DBlock(512, 512, 16, 32), | |
Upsample3D(512, 512, compress_time=True), | |
Resnet3DBlock(512, 256, 16, 32), | |
Resnet3DBlock(256, 256, 16, 32), | |
Resnet3DBlock(256, 256, 16, 32), | |
Resnet3DBlock(256, 256, 16, 32), | |
Upsample3D(256, 256, compress_time=True), | |
Resnet3DBlock(256, 256, 16, 32), | |
Resnet3DBlock(256, 256, 16, 32), | |
Resnet3DBlock(256, 256, 16, 32), | |
Resnet3DBlock(256, 256, 16, 32), | |
Upsample3D(256, 256, compress_time=False), | |
Resnet3DBlock(256, 128, 16, 32), | |
Resnet3DBlock(128, 128, 16, 32), | |
Resnet3DBlock(128, 128, 16, 32), | |
Resnet3DBlock(128, 128, 16, 32), | |
]) | |
self.norm_out = CogVideoXSpatialNorm3D(128, 16, 32) | |
self.conv_act = torch.nn.SiLU() | |
self.conv_out = CachedConv3d(128, 3, kernel_size=3, stride=1, padding=(0, 1, 1)) | |
def forward(self, sample): | |
sample = sample / self.scaling_factor | |
hidden_states = self.conv_in(sample) | |
for block in self.blocks: | |
hidden_states = block(hidden_states, sample) | |
hidden_states = self.norm_out(hidden_states, sample) | |
hidden_states = self.conv_act(hidden_states) | |
hidden_states = self.conv_out(hidden_states) | |
return hidden_states | |
def decode_video(self, sample, tiled=True, tile_size=(60, 90), tile_stride=(30, 45), progress_bar=lambda x:x): | |
if tiled: | |
B, C, T, H, W = sample.shape | |
return TileWorker2Dto3D().tiled_forward( | |
forward_fn=lambda x: self.decode_small_video(x), | |
model_input=sample, | |
tile_size=tile_size, tile_stride=tile_stride, | |
tile_device=sample.device, tile_dtype=sample.dtype, | |
computation_device=sample.device, computation_dtype=sample.dtype, | |
scales=(3/16, (T//2*8+T%2)/T, 8, 8), | |
progress_bar=progress_bar | |
) | |
else: | |
return self.decode_small_video(sample) | |
def decode_small_video(self, sample): | |
B, C, T, H, W = sample.shape | |
computation_device = self.conv_in.weight.device | |
computation_dtype = self.conv_in.weight.dtype | |
value = [] | |
for i in range(T//2): | |
tl = i*2 + T%2 - (T%2 and i==0) | |
tr = i*2 + 2 + T%2 | |
model_input = sample[:, :, tl: tr, :, :].to(dtype=computation_dtype, device=computation_device) | |
model_output = self.forward(model_input).to(dtype=sample.dtype, device=sample.device) | |
value.append(model_output) | |
value = torch.concat(value, dim=2) | |
for name, module in self.named_modules(): | |
if isinstance(module, CachedConv3d): | |
module.clear_cache() | |
return value | |
def state_dict_converter(): | |
return CogVAEDecoderStateDictConverter() | |
class CogVAEEncoder(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.scaling_factor = 0.7 | |
self.conv_in = CachedConv3d(3, 128, kernel_size=3, stride=1, padding=(0, 1, 1)) | |
self.blocks = torch.nn.ModuleList([ | |
Resnet3DBlock(128, 128, None, 32), | |
Resnet3DBlock(128, 128, None, 32), | |
Resnet3DBlock(128, 128, None, 32), | |
Downsample3D(128, 128, compress_time=True), | |
Resnet3DBlock(128, 256, None, 32), | |
Resnet3DBlock(256, 256, None, 32), | |
Resnet3DBlock(256, 256, None, 32), | |
Downsample3D(256, 256, compress_time=True), | |
Resnet3DBlock(256, 256, None, 32), | |
Resnet3DBlock(256, 256, None, 32), | |
Resnet3DBlock(256, 256, None, 32), | |
Downsample3D(256, 256, compress_time=False), | |
Resnet3DBlock(256, 512, None, 32), | |
Resnet3DBlock(512, 512, None, 32), | |
Resnet3DBlock(512, 512, None, 32), | |
Resnet3DBlock(512, 512, None, 32), | |
Resnet3DBlock(512, 512, None, 32), | |
]) | |
self.norm_out = torch.nn.GroupNorm(32, 512, eps=1e-06, affine=True) | |
self.conv_act = torch.nn.SiLU() | |
self.conv_out = CachedConv3d(512, 32, kernel_size=3, stride=1, padding=(0, 1, 1)) | |
def forward(self, sample): | |
hidden_states = self.conv_in(sample) | |
for block in self.blocks: | |
hidden_states = block(hidden_states, sample) | |
hidden_states = self.norm_out(hidden_states) | |
hidden_states = self.conv_act(hidden_states) | |
hidden_states = self.conv_out(hidden_states)[:, :16] | |
hidden_states = hidden_states * self.scaling_factor | |
return hidden_states | |
def encode_video(self, sample, tiled=True, tile_size=(60, 90), tile_stride=(30, 45), progress_bar=lambda x:x): | |
if tiled: | |
B, C, T, H, W = sample.shape | |
return TileWorker2Dto3D().tiled_forward( | |
forward_fn=lambda x: self.encode_small_video(x), | |
model_input=sample, | |
tile_size=(i * 8 for i in tile_size), tile_stride=(i * 8 for i in tile_stride), | |
tile_device=sample.device, tile_dtype=sample.dtype, | |
computation_device=sample.device, computation_dtype=sample.dtype, | |
scales=(16/3, (T//4+T%2)/T, 1/8, 1/8), | |
progress_bar=progress_bar | |
) | |
else: | |
return self.encode_small_video(sample) | |
def encode_small_video(self, sample): | |
B, C, T, H, W = sample.shape | |
computation_device = self.conv_in.weight.device | |
computation_dtype = self.conv_in.weight.dtype | |
value = [] | |
for i in range(T//8): | |
t = i*8 + T%2 - (T%2 and i==0) | |
t_ = i*8 + 8 + T%2 | |
model_input = sample[:, :, t: t_, :, :].to(dtype=computation_dtype, device=computation_device) | |
model_output = self.forward(model_input).to(dtype=sample.dtype, device=sample.device) | |
value.append(model_output) | |
value = torch.concat(value, dim=2) | |
for name, module in self.named_modules(): | |
if isinstance(module, CachedConv3d): | |
module.clear_cache() | |
return value | |
def state_dict_converter(): | |
return CogVAEEncoderStateDictConverter() | |
class CogVAEEncoderStateDictConverter: | |
def __init__(self): | |
pass | |
def from_diffusers(self, state_dict): | |
rename_dict = { | |
"encoder.conv_in.conv.weight": "conv_in.weight", | |
"encoder.conv_in.conv.bias": "conv_in.bias", | |
"encoder.down_blocks.0.downsamplers.0.conv.weight": "blocks.3.conv.weight", | |
"encoder.down_blocks.0.downsamplers.0.conv.bias": "blocks.3.conv.bias", | |
"encoder.down_blocks.1.downsamplers.0.conv.weight": "blocks.7.conv.weight", | |
"encoder.down_blocks.1.downsamplers.0.conv.bias": "blocks.7.conv.bias", | |
"encoder.down_blocks.2.downsamplers.0.conv.weight": "blocks.11.conv.weight", | |
"encoder.down_blocks.2.downsamplers.0.conv.bias": "blocks.11.conv.bias", | |
"encoder.norm_out.weight": "norm_out.weight", | |
"encoder.norm_out.bias": "norm_out.bias", | |
"encoder.conv_out.conv.weight": "conv_out.weight", | |
"encoder.conv_out.conv.bias": "conv_out.bias", | |
} | |
prefix_dict = { | |
"encoder.down_blocks.0.resnets.0.": "blocks.0.", | |
"encoder.down_blocks.0.resnets.1.": "blocks.1.", | |
"encoder.down_blocks.0.resnets.2.": "blocks.2.", | |
"encoder.down_blocks.1.resnets.0.": "blocks.4.", | |
"encoder.down_blocks.1.resnets.1.": "blocks.5.", | |
"encoder.down_blocks.1.resnets.2.": "blocks.6.", | |
"encoder.down_blocks.2.resnets.0.": "blocks.8.", | |
"encoder.down_blocks.2.resnets.1.": "blocks.9.", | |
"encoder.down_blocks.2.resnets.2.": "blocks.10.", | |
"encoder.down_blocks.3.resnets.0.": "blocks.12.", | |
"encoder.down_blocks.3.resnets.1.": "blocks.13.", | |
"encoder.down_blocks.3.resnets.2.": "blocks.14.", | |
"encoder.mid_block.resnets.0.": "blocks.15.", | |
"encoder.mid_block.resnets.1.": "blocks.16.", | |
} | |
suffix_dict = { | |
"norm1.norm_layer.weight": "norm1.norm_layer.weight", | |
"norm1.norm_layer.bias": "norm1.norm_layer.bias", | |
"norm1.conv_y.conv.weight": "norm1.conv_y.weight", | |
"norm1.conv_y.conv.bias": "norm1.conv_y.bias", | |
"norm1.conv_b.conv.weight": "norm1.conv_b.weight", | |
"norm1.conv_b.conv.bias": "norm1.conv_b.bias", | |
"norm2.norm_layer.weight": "norm2.norm_layer.weight", | |
"norm2.norm_layer.bias": "norm2.norm_layer.bias", | |
"norm2.conv_y.conv.weight": "norm2.conv_y.weight", | |
"norm2.conv_y.conv.bias": "norm2.conv_y.bias", | |
"norm2.conv_b.conv.weight": "norm2.conv_b.weight", | |
"norm2.conv_b.conv.bias": "norm2.conv_b.bias", | |
"conv1.conv.weight": "conv1.weight", | |
"conv1.conv.bias": "conv1.bias", | |
"conv2.conv.weight": "conv2.weight", | |
"conv2.conv.bias": "conv2.bias", | |
"conv_shortcut.weight": "conv_shortcut.weight", | |
"conv_shortcut.bias": "conv_shortcut.bias", | |
"norm1.weight": "norm1.weight", | |
"norm1.bias": "norm1.bias", | |
"norm2.weight": "norm2.weight", | |
"norm2.bias": "norm2.bias", | |
} | |
state_dict_ = {} | |
for name, param in state_dict.items(): | |
if name in rename_dict: | |
state_dict_[rename_dict[name]] = param | |
else: | |
for prefix in prefix_dict: | |
if name.startswith(prefix): | |
suffix = name[len(prefix):] | |
state_dict_[prefix_dict[prefix] + suffix_dict[suffix]] = param | |
return state_dict_ | |
def from_civitai(self, state_dict): | |
return self.from_diffusers(state_dict) | |
class CogVAEDecoderStateDictConverter: | |
def __init__(self): | |
pass | |
def from_diffusers(self, state_dict): | |
rename_dict = { | |
"decoder.conv_in.conv.weight": "conv_in.weight", | |
"decoder.conv_in.conv.bias": "conv_in.bias", | |
"decoder.up_blocks.0.upsamplers.0.conv.weight": "blocks.6.conv.weight", | |
"decoder.up_blocks.0.upsamplers.0.conv.bias": "blocks.6.conv.bias", | |
"decoder.up_blocks.1.upsamplers.0.conv.weight": "blocks.11.conv.weight", | |
"decoder.up_blocks.1.upsamplers.0.conv.bias": "blocks.11.conv.bias", | |
"decoder.up_blocks.2.upsamplers.0.conv.weight": "blocks.16.conv.weight", | |
"decoder.up_blocks.2.upsamplers.0.conv.bias": "blocks.16.conv.bias", | |
"decoder.norm_out.norm_layer.weight": "norm_out.norm_layer.weight", | |
"decoder.norm_out.norm_layer.bias": "norm_out.norm_layer.bias", | |
"decoder.norm_out.conv_y.conv.weight": "norm_out.conv_y.weight", | |
"decoder.norm_out.conv_y.conv.bias": "norm_out.conv_y.bias", | |
"decoder.norm_out.conv_b.conv.weight": "norm_out.conv_b.weight", | |
"decoder.norm_out.conv_b.conv.bias": "norm_out.conv_b.bias", | |
"decoder.conv_out.conv.weight": "conv_out.weight", | |
"decoder.conv_out.conv.bias": "conv_out.bias" | |
} | |
prefix_dict = { | |
"decoder.mid_block.resnets.0.": "blocks.0.", | |
"decoder.mid_block.resnets.1.": "blocks.1.", | |
"decoder.up_blocks.0.resnets.0.": "blocks.2.", | |
"decoder.up_blocks.0.resnets.1.": "blocks.3.", | |
"decoder.up_blocks.0.resnets.2.": "blocks.4.", | |
"decoder.up_blocks.0.resnets.3.": "blocks.5.", | |
"decoder.up_blocks.1.resnets.0.": "blocks.7.", | |
"decoder.up_blocks.1.resnets.1.": "blocks.8.", | |
"decoder.up_blocks.1.resnets.2.": "blocks.9.", | |
"decoder.up_blocks.1.resnets.3.": "blocks.10.", | |
"decoder.up_blocks.2.resnets.0.": "blocks.12.", | |
"decoder.up_blocks.2.resnets.1.": "blocks.13.", | |
"decoder.up_blocks.2.resnets.2.": "blocks.14.", | |
"decoder.up_blocks.2.resnets.3.": "blocks.15.", | |
"decoder.up_blocks.3.resnets.0.": "blocks.17.", | |
"decoder.up_blocks.3.resnets.1.": "blocks.18.", | |
"decoder.up_blocks.3.resnets.2.": "blocks.19.", | |
"decoder.up_blocks.3.resnets.3.": "blocks.20.", | |
} | |
suffix_dict = { | |
"norm1.norm_layer.weight": "norm1.norm_layer.weight", | |
"norm1.norm_layer.bias": "norm1.norm_layer.bias", | |
"norm1.conv_y.conv.weight": "norm1.conv_y.weight", | |
"norm1.conv_y.conv.bias": "norm1.conv_y.bias", | |
"norm1.conv_b.conv.weight": "norm1.conv_b.weight", | |
"norm1.conv_b.conv.bias": "norm1.conv_b.bias", | |
"norm2.norm_layer.weight": "norm2.norm_layer.weight", | |
"norm2.norm_layer.bias": "norm2.norm_layer.bias", | |
"norm2.conv_y.conv.weight": "norm2.conv_y.weight", | |
"norm2.conv_y.conv.bias": "norm2.conv_y.bias", | |
"norm2.conv_b.conv.weight": "norm2.conv_b.weight", | |
"norm2.conv_b.conv.bias": "norm2.conv_b.bias", | |
"conv1.conv.weight": "conv1.weight", | |
"conv1.conv.bias": "conv1.bias", | |
"conv2.conv.weight": "conv2.weight", | |
"conv2.conv.bias": "conv2.bias", | |
"conv_shortcut.weight": "conv_shortcut.weight", | |
"conv_shortcut.bias": "conv_shortcut.bias", | |
} | |
state_dict_ = {} | |
for name, param in state_dict.items(): | |
if name in rename_dict: | |
state_dict_[rename_dict[name]] = param | |
else: | |
for prefix in prefix_dict: | |
if name.startswith(prefix): | |
suffix = name[len(prefix):] | |
state_dict_[prefix_dict[prefix] + suffix_dict[suffix]] = param | |
return state_dict_ | |
def from_civitai(self, state_dict): | |
return self.from_diffusers(state_dict) | |