Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
from einops import rearrange, repeat | |
from .flux_dit import RoPEEmbedding, TimestepEmbeddings, FluxJointTransformerBlock, FluxSingleTransformerBlock, RMSNorm | |
from .utils import hash_state_dict_keys, init_weights_on_device | |
class FluxControlNet(torch.nn.Module): | |
def __init__(self, disable_guidance_embedder=False, num_joint_blocks=5, num_single_blocks=10, num_mode=0, mode_dict={}, additional_input_dim=0): | |
super().__init__() | |
self.pos_embedder = RoPEEmbedding(3072, 10000, [16, 56, 56]) | |
self.time_embedder = TimestepEmbeddings(256, 3072) | |
self.guidance_embedder = None if disable_guidance_embedder else TimestepEmbeddings(256, 3072) | |
self.pooled_text_embedder = torch.nn.Sequential(torch.nn.Linear(768, 3072), torch.nn.SiLU(), torch.nn.Linear(3072, 3072)) | |
self.context_embedder = torch.nn.Linear(4096, 3072) | |
self.x_embedder = torch.nn.Linear(64, 3072) | |
self.blocks = torch.nn.ModuleList([FluxJointTransformerBlock(3072, 24) for _ in range(num_joint_blocks)]) | |
self.single_blocks = torch.nn.ModuleList([FluxSingleTransformerBlock(3072, 24) for _ in range(num_single_blocks)]) | |
self.controlnet_blocks = torch.nn.ModuleList([torch.nn.Linear(3072, 3072) for _ in range(num_joint_blocks)]) | |
self.controlnet_single_blocks = torch.nn.ModuleList([torch.nn.Linear(3072, 3072) for _ in range(num_single_blocks)]) | |
self.mode_dict = mode_dict | |
self.controlnet_mode_embedder = torch.nn.Embedding(num_mode, 3072) if len(mode_dict) > 0 else None | |
self.controlnet_x_embedder = torch.nn.Linear(64 + additional_input_dim, 3072) | |
def prepare_image_ids(self, latents): | |
batch_size, _, height, width = latents.shape | |
latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] | |
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] | |
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) | |
latent_image_ids = latent_image_ids.reshape( | |
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
) | |
latent_image_ids = latent_image_ids.to(device=latents.device, dtype=latents.dtype) | |
return latent_image_ids | |
def patchify(self, hidden_states): | |
hidden_states = rearrange(hidden_states, "B C (H P) (W Q) -> B (H W) (C P Q)", P=2, Q=2) | |
return hidden_states | |
def align_res_stack_to_original_blocks(self, res_stack, num_blocks, hidden_states): | |
if len(res_stack) == 0: | |
return [torch.zeros_like(hidden_states)] * num_blocks | |
interval = (num_blocks + len(res_stack) - 1) // len(res_stack) | |
aligned_res_stack = [res_stack[block_id // interval] for block_id in range(num_blocks)] | |
return aligned_res_stack | |
def forward( | |
self, | |
hidden_states, | |
controlnet_conditioning, | |
timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None, | |
processor_id=None, | |
tiled=False, tile_size=128, tile_stride=64, | |
**kwargs | |
): | |
if image_ids is None: | |
image_ids = self.prepare_image_ids(hidden_states) | |
conditioning = self.time_embedder(timestep, hidden_states.dtype) + self.pooled_text_embedder(pooled_prompt_emb) | |
if self.guidance_embedder is not None: | |
guidance = guidance * 1000 | |
conditioning = conditioning + self.guidance_embedder(guidance, hidden_states.dtype) | |
prompt_emb = self.context_embedder(prompt_emb) | |
if self.controlnet_mode_embedder is not None: # Different from FluxDiT | |
processor_id = torch.tensor([self.mode_dict[processor_id]], dtype=torch.int) | |
processor_id = repeat(processor_id, "D -> B D", B=1).to(text_ids.device) | |
prompt_emb = torch.concat([self.controlnet_mode_embedder(processor_id), prompt_emb], dim=1) | |
text_ids = torch.cat([text_ids[:, :1], text_ids], dim=1) | |
image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1)) | |
hidden_states = self.patchify(hidden_states) | |
hidden_states = self.x_embedder(hidden_states) | |
controlnet_conditioning = self.patchify(controlnet_conditioning) # Different from FluxDiT | |
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_conditioning) # Different from FluxDiT | |
controlnet_res_stack = [] | |
for block, controlnet_block in zip(self.blocks, self.controlnet_blocks): | |
hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb) | |
controlnet_res_stack.append(controlnet_block(hidden_states)) | |
controlnet_single_res_stack = [] | |
hidden_states = torch.cat([prompt_emb, hidden_states], dim=1) | |
for block, controlnet_block in zip(self.single_blocks, self.controlnet_single_blocks): | |
hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb) | |
controlnet_single_res_stack.append(controlnet_block(hidden_states[:, prompt_emb.shape[1]:])) | |
controlnet_res_stack = self.align_res_stack_to_original_blocks(controlnet_res_stack, 19, hidden_states[:, prompt_emb.shape[1]:]) | |
controlnet_single_res_stack = self.align_res_stack_to_original_blocks(controlnet_single_res_stack, 38, hidden_states[:, prompt_emb.shape[1]:]) | |
return controlnet_res_stack, controlnet_single_res_stack | |
def state_dict_converter(): | |
return FluxControlNetStateDictConverter() | |
def quantize(self): | |
def cast_to(weight, dtype=None, device=None, copy=False): | |
if device is None or weight.device == device: | |
if not copy: | |
if dtype is None or weight.dtype == dtype: | |
return weight | |
return weight.to(dtype=dtype, copy=copy) | |
r = torch.empty_like(weight, dtype=dtype, device=device) | |
r.copy_(weight) | |
return r | |
def cast_weight(s, input=None, dtype=None, device=None): | |
if input is not None: | |
if dtype is None: | |
dtype = input.dtype | |
if device is None: | |
device = input.device | |
weight = cast_to(s.weight, dtype, device) | |
return weight | |
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None): | |
if input is not None: | |
if dtype is None: | |
dtype = input.dtype | |
if bias_dtype is None: | |
bias_dtype = dtype | |
if device is None: | |
device = input.device | |
bias = None | |
weight = cast_to(s.weight, dtype, device) | |
bias = cast_to(s.bias, bias_dtype, device) | |
return weight, bias | |
class quantized_layer: | |
class QLinear(torch.nn.Linear): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self,input,**kwargs): | |
weight,bias= cast_bias_weight(self,input) | |
return torch.nn.functional.linear(input,weight,bias) | |
class QRMSNorm(torch.nn.Module): | |
def __init__(self, module): | |
super().__init__() | |
self.module = module | |
def forward(self,hidden_states,**kwargs): | |
weight= cast_weight(self.module,hidden_states) | |
input_dtype = hidden_states.dtype | |
variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps) | |
hidden_states = hidden_states.to(input_dtype) * weight | |
return hidden_states | |
class QEmbedding(torch.nn.Embedding): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self,input,**kwargs): | |
weight= cast_weight(self,input) | |
return torch.nn.functional.embedding( | |
input, weight, self.padding_idx, self.max_norm, | |
self.norm_type, self.scale_grad_by_freq, self.sparse) | |
def replace_layer(model): | |
for name, module in model.named_children(): | |
if isinstance(module,quantized_layer.QRMSNorm): | |
continue | |
if isinstance(module, torch.nn.Linear): | |
with init_weights_on_device(): | |
new_layer = quantized_layer.QLinear(module.in_features,module.out_features) | |
new_layer.weight = module.weight | |
if module.bias is not None: | |
new_layer.bias = module.bias | |
setattr(model, name, new_layer) | |
elif isinstance(module, RMSNorm): | |
if hasattr(module,"quantized"): | |
continue | |
module.quantized= True | |
new_layer = quantized_layer.QRMSNorm(module) | |
setattr(model, name, new_layer) | |
elif isinstance(module,torch.nn.Embedding): | |
rows, cols = module.weight.shape | |
new_layer = quantized_layer.QEmbedding( | |
num_embeddings=rows, | |
embedding_dim=cols, | |
_weight=module.weight, | |
# _freeze=module.freeze, | |
padding_idx=module.padding_idx, | |
max_norm=module.max_norm, | |
norm_type=module.norm_type, | |
scale_grad_by_freq=module.scale_grad_by_freq, | |
sparse=module.sparse) | |
setattr(model, name, new_layer) | |
else: | |
replace_layer(module) | |
replace_layer(self) | |
class FluxControlNetStateDictConverter: | |
def __init__(self): | |
pass | |
def from_diffusers(self, state_dict): | |
hash_value = hash_state_dict_keys(state_dict) | |
global_rename_dict = { | |
"context_embedder": "context_embedder", | |
"x_embedder": "x_embedder", | |
"time_text_embed.timestep_embedder.linear_1": "time_embedder.timestep_embedder.0", | |
"time_text_embed.timestep_embedder.linear_2": "time_embedder.timestep_embedder.2", | |
"time_text_embed.guidance_embedder.linear_1": "guidance_embedder.timestep_embedder.0", | |
"time_text_embed.guidance_embedder.linear_2": "guidance_embedder.timestep_embedder.2", | |
"time_text_embed.text_embedder.linear_1": "pooled_text_embedder.0", | |
"time_text_embed.text_embedder.linear_2": "pooled_text_embedder.2", | |
"norm_out.linear": "final_norm_out.linear", | |
"proj_out": "final_proj_out", | |
} | |
rename_dict = { | |
"proj_out": "proj_out", | |
"norm1.linear": "norm1_a.linear", | |
"norm1_context.linear": "norm1_b.linear", | |
"attn.to_q": "attn.a_to_q", | |
"attn.to_k": "attn.a_to_k", | |
"attn.to_v": "attn.a_to_v", | |
"attn.to_out.0": "attn.a_to_out", | |
"attn.add_q_proj": "attn.b_to_q", | |
"attn.add_k_proj": "attn.b_to_k", | |
"attn.add_v_proj": "attn.b_to_v", | |
"attn.to_add_out": "attn.b_to_out", | |
"ff.net.0.proj": "ff_a.0", | |
"ff.net.2": "ff_a.2", | |
"ff_context.net.0.proj": "ff_b.0", | |
"ff_context.net.2": "ff_b.2", | |
"attn.norm_q": "attn.norm_q_a", | |
"attn.norm_k": "attn.norm_k_a", | |
"attn.norm_added_q": "attn.norm_q_b", | |
"attn.norm_added_k": "attn.norm_k_b", | |
} | |
rename_dict_single = { | |
"attn.to_q": "a_to_q", | |
"attn.to_k": "a_to_k", | |
"attn.to_v": "a_to_v", | |
"attn.norm_q": "norm_q_a", | |
"attn.norm_k": "norm_k_a", | |
"norm.linear": "norm.linear", | |
"proj_mlp": "proj_in_besides_attn", | |
"proj_out": "proj_out", | |
} | |
state_dict_ = {} | |
for name, param in state_dict.items(): | |
if name.endswith(".weight") or name.endswith(".bias"): | |
suffix = ".weight" if name.endswith(".weight") else ".bias" | |
prefix = name[:-len(suffix)] | |
if prefix in global_rename_dict: | |
state_dict_[global_rename_dict[prefix] + suffix] = param | |
elif prefix.startswith("transformer_blocks."): | |
names = prefix.split(".") | |
names[0] = "blocks" | |
middle = ".".join(names[2:]) | |
if middle in rename_dict: | |
name_ = ".".join(names[:2] + [rename_dict[middle]] + [suffix[1:]]) | |
state_dict_[name_] = param | |
elif prefix.startswith("single_transformer_blocks."): | |
names = prefix.split(".") | |
names[0] = "single_blocks" | |
middle = ".".join(names[2:]) | |
if middle in rename_dict_single: | |
name_ = ".".join(names[:2] + [rename_dict_single[middle]] + [suffix[1:]]) | |
state_dict_[name_] = param | |
else: | |
state_dict_[name] = param | |
else: | |
state_dict_[name] = param | |
for name in list(state_dict_.keys()): | |
if ".proj_in_besides_attn." in name: | |
name_ = name.replace(".proj_in_besides_attn.", ".to_qkv_mlp.") | |
param = torch.concat([ | |
state_dict_[name.replace(".proj_in_besides_attn.", f".a_to_q.")], | |
state_dict_[name.replace(".proj_in_besides_attn.", f".a_to_k.")], | |
state_dict_[name.replace(".proj_in_besides_attn.", f".a_to_v.")], | |
state_dict_[name], | |
], dim=0) | |
state_dict_[name_] = param | |
state_dict_.pop(name.replace(".proj_in_besides_attn.", f".a_to_q.")) | |
state_dict_.pop(name.replace(".proj_in_besides_attn.", f".a_to_k.")) | |
state_dict_.pop(name.replace(".proj_in_besides_attn.", f".a_to_v.")) | |
state_dict_.pop(name) | |
for name in list(state_dict_.keys()): | |
for component in ["a", "b"]: | |
if f".{component}_to_q." in name: | |
name_ = name.replace(f".{component}_to_q.", f".{component}_to_qkv.") | |
param = torch.concat([ | |
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")], | |
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")], | |
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")], | |
], dim=0) | |
state_dict_[name_] = param | |
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_q.")) | |
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_k.")) | |
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_v.")) | |
if hash_value == "78d18b9101345ff695f312e7e62538c0": | |
extra_kwargs = {"num_mode": 10, "mode_dict": {"canny": 0, "tile": 1, "depth": 2, "blur": 3, "pose": 4, "gray": 5, "lq": 6}} | |
elif hash_value == "b001c89139b5f053c715fe772362dd2a": | |
extra_kwargs = {"num_single_blocks": 0} | |
elif hash_value == "52357cb26250681367488a8954c271e8": | |
extra_kwargs = {"num_joint_blocks": 6, "num_single_blocks": 0, "additional_input_dim": 4} | |
elif hash_value == "0cfd1740758423a2a854d67c136d1e8c": | |
extra_kwargs = {"num_joint_blocks": 4, "num_single_blocks": 1} | |
else: | |
extra_kwargs = {} | |
return state_dict_, extra_kwargs | |
def from_civitai(self, state_dict): | |
return self.from_diffusers(state_dict) | |