jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
raw
history blame
34 kB
import torch
from .sd3_dit import TimestepEmbeddings, AdaLayerNorm, RMSNorm
from einops import rearrange
from .tiler import TileWorker
from .utils import init_weights_on_device
def interact_with_ipadapter(hidden_states, q, ip_k, ip_v, scale=1.0):
batch_size, num_tokens = hidden_states.shape[0:2]
ip_hidden_states = torch.nn.functional.scaled_dot_product_attention(q, ip_k, ip_v)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, num_tokens, -1)
hidden_states = hidden_states + scale * ip_hidden_states
return hidden_states
class RoPEEmbedding(torch.nn.Module):
def __init__(self, dim, theta, axes_dim):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def rope(self, pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
assert dim % 2 == 0, "The dimension must be even."
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
batch_size, seq_length = pos.shape
out = torch.einsum("...n,d->...nd", pos, omega)
cos_out = torch.cos(out)
sin_out = torch.sin(out)
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
return out.float()
def forward(self, ids):
n_axes = ids.shape[-1]
emb = torch.cat([self.rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3)
return emb.unsqueeze(1)
class FluxJointAttention(torch.nn.Module):
def __init__(self, dim_a, dim_b, num_heads, head_dim, only_out_a=False):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.only_out_a = only_out_a
self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3)
self.b_to_qkv = torch.nn.Linear(dim_b, dim_b * 3)
self.norm_q_a = RMSNorm(head_dim, eps=1e-6)
self.norm_k_a = RMSNorm(head_dim, eps=1e-6)
self.norm_q_b = RMSNorm(head_dim, eps=1e-6)
self.norm_k_b = RMSNorm(head_dim, eps=1e-6)
self.a_to_out = torch.nn.Linear(dim_a, dim_a)
if not only_out_a:
self.b_to_out = torch.nn.Linear(dim_b, dim_b)
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def forward(self, hidden_states_a, hidden_states_b, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None):
batch_size = hidden_states_a.shape[0]
# Part A
qkv_a = self.a_to_qkv(hidden_states_a)
qkv_a = qkv_a.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
q_a, k_a, v_a = qkv_a.chunk(3, dim=1)
q_a, k_a = self.norm_q_a(q_a), self.norm_k_a(k_a)
# Part B
qkv_b = self.b_to_qkv(hidden_states_b)
qkv_b = qkv_b.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
q_b, k_b, v_b = qkv_b.chunk(3, dim=1)
q_b, k_b = self.norm_q_b(q_b), self.norm_k_b(k_b)
q = torch.concat([q_b, q_a], dim=2)
k = torch.concat([k_b, k_a], dim=2)
v = torch.concat([v_b, v_a], dim=2)
q, k = self.apply_rope(q, k, image_rotary_emb)
hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
hidden_states = hidden_states.to(q.dtype)
hidden_states_b, hidden_states_a = hidden_states[:, :hidden_states_b.shape[1]], hidden_states[:, hidden_states_b.shape[1]:]
if ipadapter_kwargs_list is not None:
hidden_states_a = interact_with_ipadapter(hidden_states_a, q_a, **ipadapter_kwargs_list)
hidden_states_a = self.a_to_out(hidden_states_a)
if self.only_out_a:
return hidden_states_a
else:
hidden_states_b = self.b_to_out(hidden_states_b)
return hidden_states_a, hidden_states_b
class FluxJointTransformerBlock(torch.nn.Module):
def __init__(self, dim, num_attention_heads):
super().__init__()
self.norm1_a = AdaLayerNorm(dim)
self.norm1_b = AdaLayerNorm(dim)
self.attn = FluxJointAttention(dim, dim, num_attention_heads, dim // num_attention_heads)
self.norm2_a = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_a = torch.nn.Sequential(
torch.nn.Linear(dim, dim*4),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(dim*4, dim)
)
self.norm2_b = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_b = torch.nn.Sequential(
torch.nn.Linear(dim, dim*4),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(dim*4, dim)
)
def forward(self, hidden_states_a, hidden_states_b, temb, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None):
norm_hidden_states_a, gate_msa_a, shift_mlp_a, scale_mlp_a, gate_mlp_a = self.norm1_a(hidden_states_a, emb=temb)
norm_hidden_states_b, gate_msa_b, shift_mlp_b, scale_mlp_b, gate_mlp_b = self.norm1_b(hidden_states_b, emb=temb)
# Attention
attn_output_a, attn_output_b = self.attn(norm_hidden_states_a, norm_hidden_states_b, image_rotary_emb, attn_mask, ipadapter_kwargs_list)
# Part A
hidden_states_a = hidden_states_a + gate_msa_a * attn_output_a
norm_hidden_states_a = self.norm2_a(hidden_states_a) * (1 + scale_mlp_a) + shift_mlp_a
hidden_states_a = hidden_states_a + gate_mlp_a * self.ff_a(norm_hidden_states_a)
# Part B
hidden_states_b = hidden_states_b + gate_msa_b * attn_output_b
norm_hidden_states_b = self.norm2_b(hidden_states_b) * (1 + scale_mlp_b) + shift_mlp_b
hidden_states_b = hidden_states_b + gate_mlp_b * self.ff_b(norm_hidden_states_b)
return hidden_states_a, hidden_states_b
class FluxSingleAttention(torch.nn.Module):
def __init__(self, dim_a, dim_b, num_heads, head_dim):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3)
self.norm_q_a = RMSNorm(head_dim, eps=1e-6)
self.norm_k_a = RMSNorm(head_dim, eps=1e-6)
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def forward(self, hidden_states, image_rotary_emb):
batch_size = hidden_states.shape[0]
qkv_a = self.a_to_qkv(hidden_states)
qkv_a = qkv_a.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
q_a, k_a, v = qkv_a.chunk(3, dim=1)
q_a, k_a = self.norm_q_a(q_a), self.norm_k_a(k_a)
q, k = self.apply_rope(q_a, k_a, image_rotary_emb)
hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
hidden_states = hidden_states.to(q.dtype)
return hidden_states
class AdaLayerNormSingle(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = torch.nn.SiLU()
self.linear = torch.nn.Linear(dim, 3 * dim, bias=True)
self.norm = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, emb):
emb = self.linear(self.silu(emb))
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa
class FluxSingleTransformerBlock(torch.nn.Module):
def __init__(self, dim, num_attention_heads):
super().__init__()
self.num_heads = num_attention_heads
self.head_dim = dim // num_attention_heads
self.dim = dim
self.norm = AdaLayerNormSingle(dim)
self.to_qkv_mlp = torch.nn.Linear(dim, dim * (3 + 4))
self.norm_q_a = RMSNorm(self.head_dim, eps=1e-6)
self.norm_k_a = RMSNorm(self.head_dim, eps=1e-6)
self.proj_out = torch.nn.Linear(dim * 5, dim)
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def process_attention(self, hidden_states, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None):
batch_size = hidden_states.shape[0]
qkv = hidden_states.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
q, k, v = qkv.chunk(3, dim=1)
q, k = self.norm_q_a(q), self.norm_k_a(k)
q, k = self.apply_rope(q, k, image_rotary_emb)
hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
hidden_states = hidden_states.to(q.dtype)
if ipadapter_kwargs_list is not None:
hidden_states = interact_with_ipadapter(hidden_states, q, **ipadapter_kwargs_list)
return hidden_states
def forward(self, hidden_states_a, hidden_states_b, temb, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None):
residual = hidden_states_a
norm_hidden_states, gate = self.norm(hidden_states_a, emb=temb)
hidden_states_a = self.to_qkv_mlp(norm_hidden_states)
attn_output, mlp_hidden_states = hidden_states_a[:, :, :self.dim * 3], hidden_states_a[:, :, self.dim * 3:]
attn_output = self.process_attention(attn_output, image_rotary_emb, attn_mask, ipadapter_kwargs_list)
mlp_hidden_states = torch.nn.functional.gelu(mlp_hidden_states, approximate="tanh")
hidden_states_a = torch.cat([attn_output, mlp_hidden_states], dim=2)
hidden_states_a = gate.unsqueeze(1) * self.proj_out(hidden_states_a)
hidden_states_a = residual + hidden_states_a
return hidden_states_a, hidden_states_b
class AdaLayerNormContinuous(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = torch.nn.SiLU()
self.linear = torch.nn.Linear(dim, dim * 2, bias=True)
self.norm = torch.nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False)
def forward(self, x, conditioning):
emb = self.linear(self.silu(conditioning))
scale, shift = torch.chunk(emb, 2, dim=1)
x = self.norm(x) * (1 + scale)[:, None] + shift[:, None]
return x
class FluxDiT(torch.nn.Module):
def __init__(self, disable_guidance_embedder=False):
super().__init__()
self.pos_embedder = RoPEEmbedding(3072, 10000, [16, 56, 56])
self.time_embedder = TimestepEmbeddings(256, 3072)
self.guidance_embedder = None if disable_guidance_embedder else TimestepEmbeddings(256, 3072)
self.pooled_text_embedder = torch.nn.Sequential(torch.nn.Linear(768, 3072), torch.nn.SiLU(), torch.nn.Linear(3072, 3072))
self.context_embedder = torch.nn.Linear(4096, 3072)
self.x_embedder = torch.nn.Linear(64, 3072)
self.blocks = torch.nn.ModuleList([FluxJointTransformerBlock(3072, 24) for _ in range(19)])
self.single_blocks = torch.nn.ModuleList([FluxSingleTransformerBlock(3072, 24) for _ in range(38)])
self.final_norm_out = AdaLayerNormContinuous(3072)
self.final_proj_out = torch.nn.Linear(3072, 64)
def patchify(self, hidden_states):
hidden_states = rearrange(hidden_states, "B C (H P) (W Q) -> B (H W) (C P Q)", P=2, Q=2)
return hidden_states
def unpatchify(self, hidden_states, height, width):
hidden_states = rearrange(hidden_states, "B (H W) (C P Q) -> B C (H P) (W Q)", P=2, Q=2, H=height//2, W=width//2)
return hidden_states
def prepare_image_ids(self, latents):
batch_size, _, height, width = latents.shape
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
latent_image_ids = latent_image_ids.reshape(
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
latent_image_ids = latent_image_ids.to(device=latents.device, dtype=latents.dtype)
return latent_image_ids
def tiled_forward(
self,
hidden_states,
timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids,
tile_size=128, tile_stride=64,
**kwargs
):
# Due to the global positional embedding, we cannot implement layer-wise tiled forward.
hidden_states = TileWorker().tiled_forward(
lambda x: self.forward(x, timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None),
hidden_states,
tile_size,
tile_stride,
tile_device=hidden_states.device,
tile_dtype=hidden_states.dtype
)
return hidden_states
def construct_mask(self, entity_masks, prompt_seq_len, image_seq_len):
N = len(entity_masks)
batch_size = entity_masks[0].shape[0]
total_seq_len = N * prompt_seq_len + image_seq_len
patched_masks = [self.patchify(entity_masks[i]) for i in range(N)]
attention_mask = torch.ones((batch_size, total_seq_len, total_seq_len), dtype=torch.bool).to(device=entity_masks[0].device)
image_start = N * prompt_seq_len
image_end = N * prompt_seq_len + image_seq_len
# prompt-image mask
for i in range(N):
prompt_start = i * prompt_seq_len
prompt_end = (i + 1) * prompt_seq_len
image_mask = torch.sum(patched_masks[i], dim=-1) > 0
image_mask = image_mask.unsqueeze(1).repeat(1, prompt_seq_len, 1)
# prompt update with image
attention_mask[:, prompt_start:prompt_end, image_start:image_end] = image_mask
# image update with prompt
attention_mask[:, image_start:image_end, prompt_start:prompt_end] = image_mask.transpose(1, 2)
# prompt-prompt mask
for i in range(N):
for j in range(N):
if i != j:
prompt_start_i = i * prompt_seq_len
prompt_end_i = (i + 1) * prompt_seq_len
prompt_start_j = j * prompt_seq_len
prompt_end_j = (j + 1) * prompt_seq_len
attention_mask[:, prompt_start_i:prompt_end_i, prompt_start_j:prompt_end_j] = False
attention_mask = attention_mask.float()
attention_mask[attention_mask == 0] = float('-inf')
attention_mask[attention_mask == 1] = 0
return attention_mask
def process_entity_masks(self, hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids):
repeat_dim = hidden_states.shape[1]
max_masks = 0
attention_mask = None
prompt_embs = [prompt_emb]
if entity_masks is not None:
# entity_masks
batch_size, max_masks = entity_masks.shape[0], entity_masks.shape[1]
entity_masks = entity_masks.repeat(1, 1, repeat_dim, 1, 1)
entity_masks = [entity_masks[:, i, None].squeeze(1) for i in range(max_masks)]
# global mask
global_mask = torch.ones_like(entity_masks[0]).to(device=hidden_states.device, dtype=hidden_states.dtype)
entity_masks = entity_masks + [global_mask] # append global to last
# attention mask
attention_mask = self.construct_mask(entity_masks, prompt_emb.shape[1], hidden_states.shape[1])
attention_mask = attention_mask.to(device=hidden_states.device, dtype=hidden_states.dtype)
attention_mask = attention_mask.unsqueeze(1)
# embds: n_masks * b * seq * d
local_embs = [entity_prompt_emb[:, i, None].squeeze(1) for i in range(max_masks)]
prompt_embs = local_embs + prompt_embs # append global to last
prompt_embs = [self.context_embedder(prompt_emb) for prompt_emb in prompt_embs]
prompt_emb = torch.cat(prompt_embs, dim=1)
# positional embedding
text_ids = torch.cat([text_ids] * (max_masks + 1), dim=1)
image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1))
return prompt_emb, image_rotary_emb, attention_mask
def forward(
self,
hidden_states,
timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None,
tiled=False, tile_size=128, tile_stride=64, entity_prompt_emb=None, entity_masks=None,
use_gradient_checkpointing=False,
**kwargs
):
if tiled:
return self.tiled_forward(
hidden_states,
timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids,
tile_size=tile_size, tile_stride=tile_stride,
**kwargs
)
if image_ids is None:
image_ids = self.prepare_image_ids(hidden_states)
conditioning = self.time_embedder(timestep, hidden_states.dtype) + self.pooled_text_embedder(pooled_prompt_emb)
if self.guidance_embedder is not None:
guidance = guidance * 1000
conditioning = conditioning + self.guidance_embedder(guidance, hidden_states.dtype)
height, width = hidden_states.shape[-2:]
hidden_states = self.patchify(hidden_states)
hidden_states = self.x_embedder(hidden_states)
if entity_prompt_emb is not None and entity_masks is not None:
prompt_emb, image_rotary_emb, attention_mask = self.process_entity_masks(hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids)
else:
prompt_emb = self.context_embedder(prompt_emb)
image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1))
attention_mask = None
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for block in self.blocks:
if self.training and use_gradient_checkpointing:
hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask,
use_reentrant=False,
)
else:
hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask)
hidden_states = torch.cat([prompt_emb, hidden_states], dim=1)
for block in self.single_blocks:
if self.training and use_gradient_checkpointing:
hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask,
use_reentrant=False,
)
else:
hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask)
hidden_states = hidden_states[:, prompt_emb.shape[1]:]
hidden_states = self.final_norm_out(hidden_states, conditioning)
hidden_states = self.final_proj_out(hidden_states)
hidden_states = self.unpatchify(hidden_states, height, width)
return hidden_states
def quantize(self):
def cast_to(weight, dtype=None, device=None, copy=False):
if device is None or weight.device == device:
if not copy:
if dtype is None or weight.dtype == dtype:
return weight
return weight.to(dtype=dtype, copy=copy)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight)
return r
def cast_weight(s, input=None, dtype=None, device=None):
if input is not None:
if dtype is None:
dtype = input.dtype
if device is None:
device = input.device
weight = cast_to(s.weight, dtype, device)
return weight
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
if input is not None:
if dtype is None:
dtype = input.dtype
if bias_dtype is None:
bias_dtype = dtype
if device is None:
device = input.device
bias = None
weight = cast_to(s.weight, dtype, device)
bias = cast_to(s.bias, bias_dtype, device)
return weight, bias
class quantized_layer:
class Linear(torch.nn.Linear):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self,input,**kwargs):
weight,bias= cast_bias_weight(self,input)
return torch.nn.functional.linear(input,weight,bias)
class RMSNorm(torch.nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self,hidden_states,**kwargs):
weight= cast_weight(self.module,hidden_states)
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps)
hidden_states = hidden_states.to(input_dtype) * weight
return hidden_states
def replace_layer(model):
for name, module in model.named_children():
if isinstance(module, torch.nn.Linear):
with init_weights_on_device():
new_layer = quantized_layer.Linear(module.in_features,module.out_features)
new_layer.weight = module.weight
if module.bias is not None:
new_layer.bias = module.bias
# del module
setattr(model, name, new_layer)
elif isinstance(module, RMSNorm):
if hasattr(module,"quantized"):
continue
module.quantized= True
new_layer = quantized_layer.RMSNorm(module)
setattr(model, name, new_layer)
else:
replace_layer(module)
replace_layer(self)
@staticmethod
def state_dict_converter():
return FluxDiTStateDictConverter()
class FluxDiTStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
global_rename_dict = {
"context_embedder": "context_embedder",
"x_embedder": "x_embedder",
"time_text_embed.timestep_embedder.linear_1": "time_embedder.timestep_embedder.0",
"time_text_embed.timestep_embedder.linear_2": "time_embedder.timestep_embedder.2",
"time_text_embed.guidance_embedder.linear_1": "guidance_embedder.timestep_embedder.0",
"time_text_embed.guidance_embedder.linear_2": "guidance_embedder.timestep_embedder.2",
"time_text_embed.text_embedder.linear_1": "pooled_text_embedder.0",
"time_text_embed.text_embedder.linear_2": "pooled_text_embedder.2",
"norm_out.linear": "final_norm_out.linear",
"proj_out": "final_proj_out",
}
rename_dict = {
"proj_out": "proj_out",
"norm1.linear": "norm1_a.linear",
"norm1_context.linear": "norm1_b.linear",
"attn.to_q": "attn.a_to_q",
"attn.to_k": "attn.a_to_k",
"attn.to_v": "attn.a_to_v",
"attn.to_out.0": "attn.a_to_out",
"attn.add_q_proj": "attn.b_to_q",
"attn.add_k_proj": "attn.b_to_k",
"attn.add_v_proj": "attn.b_to_v",
"attn.to_add_out": "attn.b_to_out",
"ff.net.0.proj": "ff_a.0",
"ff.net.2": "ff_a.2",
"ff_context.net.0.proj": "ff_b.0",
"ff_context.net.2": "ff_b.2",
"attn.norm_q": "attn.norm_q_a",
"attn.norm_k": "attn.norm_k_a",
"attn.norm_added_q": "attn.norm_q_b",
"attn.norm_added_k": "attn.norm_k_b",
}
rename_dict_single = {
"attn.to_q": "a_to_q",
"attn.to_k": "a_to_k",
"attn.to_v": "a_to_v",
"attn.norm_q": "norm_q_a",
"attn.norm_k": "norm_k_a",
"norm.linear": "norm.linear",
"proj_mlp": "proj_in_besides_attn",
"proj_out": "proj_out",
}
state_dict_ = {}
for name, param in state_dict.items():
if name.endswith(".weight") or name.endswith(".bias"):
suffix = ".weight" if name.endswith(".weight") else ".bias"
prefix = name[:-len(suffix)]
if prefix in global_rename_dict:
state_dict_[global_rename_dict[prefix] + suffix] = param
elif prefix.startswith("transformer_blocks."):
names = prefix.split(".")
names[0] = "blocks"
middle = ".".join(names[2:])
if middle in rename_dict:
name_ = ".".join(names[:2] + [rename_dict[middle]] + [suffix[1:]])
state_dict_[name_] = param
elif prefix.startswith("single_transformer_blocks."):
names = prefix.split(".")
names[0] = "single_blocks"
middle = ".".join(names[2:])
if middle in rename_dict_single:
name_ = ".".join(names[:2] + [rename_dict_single[middle]] + [suffix[1:]])
state_dict_[name_] = param
else:
pass
else:
pass
for name in list(state_dict_.keys()):
if "single_blocks." in name and ".a_to_q." in name:
mlp = state_dict_.get(name.replace(".a_to_q.", ".proj_in_besides_attn."), None)
if mlp is None:
mlp = torch.zeros(4 * state_dict_[name].shape[0],
*state_dict_[name].shape[1:],
dtype=state_dict_[name].dtype)
else:
state_dict_.pop(name.replace(".a_to_q.", ".proj_in_besides_attn."))
param = torch.concat([
state_dict_.pop(name),
state_dict_.pop(name.replace(".a_to_q.", ".a_to_k.")),
state_dict_.pop(name.replace(".a_to_q.", ".a_to_v.")),
mlp,
], dim=0)
name_ = name.replace(".a_to_q.", ".to_qkv_mlp.")
state_dict_[name_] = param
for name in list(state_dict_.keys()):
for component in ["a", "b"]:
if f".{component}_to_q." in name:
name_ = name.replace(f".{component}_to_q.", f".{component}_to_qkv.")
param = torch.concat([
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")],
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")],
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")],
], dim=0)
state_dict_[name_] = param
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_q."))
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_k."))
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_v."))
return state_dict_
def from_civitai(self, state_dict):
rename_dict = {
"time_in.in_layer.bias": "time_embedder.timestep_embedder.0.bias",
"time_in.in_layer.weight": "time_embedder.timestep_embedder.0.weight",
"time_in.out_layer.bias": "time_embedder.timestep_embedder.2.bias",
"time_in.out_layer.weight": "time_embedder.timestep_embedder.2.weight",
"txt_in.bias": "context_embedder.bias",
"txt_in.weight": "context_embedder.weight",
"vector_in.in_layer.bias": "pooled_text_embedder.0.bias",
"vector_in.in_layer.weight": "pooled_text_embedder.0.weight",
"vector_in.out_layer.bias": "pooled_text_embedder.2.bias",
"vector_in.out_layer.weight": "pooled_text_embedder.2.weight",
"final_layer.linear.bias": "final_proj_out.bias",
"final_layer.linear.weight": "final_proj_out.weight",
"guidance_in.in_layer.bias": "guidance_embedder.timestep_embedder.0.bias",
"guidance_in.in_layer.weight": "guidance_embedder.timestep_embedder.0.weight",
"guidance_in.out_layer.bias": "guidance_embedder.timestep_embedder.2.bias",
"guidance_in.out_layer.weight": "guidance_embedder.timestep_embedder.2.weight",
"img_in.bias": "x_embedder.bias",
"img_in.weight": "x_embedder.weight",
"final_layer.adaLN_modulation.1.weight": "final_norm_out.linear.weight",
"final_layer.adaLN_modulation.1.bias": "final_norm_out.linear.bias",
}
suffix_rename_dict = {
"img_attn.norm.key_norm.scale": "attn.norm_k_a.weight",
"img_attn.norm.query_norm.scale": "attn.norm_q_a.weight",
"img_attn.proj.bias": "attn.a_to_out.bias",
"img_attn.proj.weight": "attn.a_to_out.weight",
"img_attn.qkv.bias": "attn.a_to_qkv.bias",
"img_attn.qkv.weight": "attn.a_to_qkv.weight",
"img_mlp.0.bias": "ff_a.0.bias",
"img_mlp.0.weight": "ff_a.0.weight",
"img_mlp.2.bias": "ff_a.2.bias",
"img_mlp.2.weight": "ff_a.2.weight",
"img_mod.lin.bias": "norm1_a.linear.bias",
"img_mod.lin.weight": "norm1_a.linear.weight",
"txt_attn.norm.key_norm.scale": "attn.norm_k_b.weight",
"txt_attn.norm.query_norm.scale": "attn.norm_q_b.weight",
"txt_attn.proj.bias": "attn.b_to_out.bias",
"txt_attn.proj.weight": "attn.b_to_out.weight",
"txt_attn.qkv.bias": "attn.b_to_qkv.bias",
"txt_attn.qkv.weight": "attn.b_to_qkv.weight",
"txt_mlp.0.bias": "ff_b.0.bias",
"txt_mlp.0.weight": "ff_b.0.weight",
"txt_mlp.2.bias": "ff_b.2.bias",
"txt_mlp.2.weight": "ff_b.2.weight",
"txt_mod.lin.bias": "norm1_b.linear.bias",
"txt_mod.lin.weight": "norm1_b.linear.weight",
"linear1.bias": "to_qkv_mlp.bias",
"linear1.weight": "to_qkv_mlp.weight",
"linear2.bias": "proj_out.bias",
"linear2.weight": "proj_out.weight",
"modulation.lin.bias": "norm.linear.bias",
"modulation.lin.weight": "norm.linear.weight",
"norm.key_norm.scale": "norm_k_a.weight",
"norm.query_norm.scale": "norm_q_a.weight",
}
state_dict_ = {}
for name, param in state_dict.items():
if name.startswith("model.diffusion_model."):
name = name[len("model.diffusion_model."):]
names = name.split(".")
if name in rename_dict:
rename = rename_dict[name]
if name.startswith("final_layer.adaLN_modulation.1."):
param = torch.concat([param[3072:], param[:3072]], dim=0)
state_dict_[rename] = param
elif names[0] == "double_blocks":
rename = f"blocks.{names[1]}." + suffix_rename_dict[".".join(names[2:])]
state_dict_[rename] = param
elif names[0] == "single_blocks":
if ".".join(names[2:]) in suffix_rename_dict:
rename = f"single_blocks.{names[1]}." + suffix_rename_dict[".".join(names[2:])]
state_dict_[rename] = param
else:
pass
if "guidance_embedder.timestep_embedder.0.weight" not in state_dict_:
return state_dict_, {"disable_guidance_embedder": True}
else:
return state_dict_