Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
from .sd3_dit import TimestepEmbeddings, AdaLayerNorm, RMSNorm | |
from einops import rearrange | |
from .tiler import TileWorker | |
from .utils import init_weights_on_device | |
def interact_with_ipadapter(hidden_states, q, ip_k, ip_v, scale=1.0): | |
batch_size, num_tokens = hidden_states.shape[0:2] | |
ip_hidden_states = torch.nn.functional.scaled_dot_product_attention(q, ip_k, ip_v) | |
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, num_tokens, -1) | |
hidden_states = hidden_states + scale * ip_hidden_states | |
return hidden_states | |
class RoPEEmbedding(torch.nn.Module): | |
def __init__(self, dim, theta, axes_dim): | |
super().__init__() | |
self.dim = dim | |
self.theta = theta | |
self.axes_dim = axes_dim | |
def rope(self, pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor: | |
assert dim % 2 == 0, "The dimension must be even." | |
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim | |
omega = 1.0 / (theta**scale) | |
batch_size, seq_length = pos.shape | |
out = torch.einsum("...n,d->...nd", pos, omega) | |
cos_out = torch.cos(out) | |
sin_out = torch.sin(out) | |
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) | |
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2) | |
return out.float() | |
def forward(self, ids): | |
n_axes = ids.shape[-1] | |
emb = torch.cat([self.rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3) | |
return emb.unsqueeze(1) | |
class FluxJointAttention(torch.nn.Module): | |
def __init__(self, dim_a, dim_b, num_heads, head_dim, only_out_a=False): | |
super().__init__() | |
self.num_heads = num_heads | |
self.head_dim = head_dim | |
self.only_out_a = only_out_a | |
self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3) | |
self.b_to_qkv = torch.nn.Linear(dim_b, dim_b * 3) | |
self.norm_q_a = RMSNorm(head_dim, eps=1e-6) | |
self.norm_k_a = RMSNorm(head_dim, eps=1e-6) | |
self.norm_q_b = RMSNorm(head_dim, eps=1e-6) | |
self.norm_k_b = RMSNorm(head_dim, eps=1e-6) | |
self.a_to_out = torch.nn.Linear(dim_a, dim_a) | |
if not only_out_a: | |
self.b_to_out = torch.nn.Linear(dim_b, dim_b) | |
def apply_rope(self, xq, xk, freqs_cis): | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
def forward(self, hidden_states_a, hidden_states_b, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None): | |
batch_size = hidden_states_a.shape[0] | |
# Part A | |
qkv_a = self.a_to_qkv(hidden_states_a) | |
qkv_a = qkv_a.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2) | |
q_a, k_a, v_a = qkv_a.chunk(3, dim=1) | |
q_a, k_a = self.norm_q_a(q_a), self.norm_k_a(k_a) | |
# Part B | |
qkv_b = self.b_to_qkv(hidden_states_b) | |
qkv_b = qkv_b.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2) | |
q_b, k_b, v_b = qkv_b.chunk(3, dim=1) | |
q_b, k_b = self.norm_q_b(q_b), self.norm_k_b(k_b) | |
q = torch.concat([q_b, q_a], dim=2) | |
k = torch.concat([k_b, k_a], dim=2) | |
v = torch.concat([v_b, v_a], dim=2) | |
q, k = self.apply_rope(q, k, image_rotary_emb) | |
hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) | |
hidden_states = hidden_states.to(q.dtype) | |
hidden_states_b, hidden_states_a = hidden_states[:, :hidden_states_b.shape[1]], hidden_states[:, hidden_states_b.shape[1]:] | |
if ipadapter_kwargs_list is not None: | |
hidden_states_a = interact_with_ipadapter(hidden_states_a, q_a, **ipadapter_kwargs_list) | |
hidden_states_a = self.a_to_out(hidden_states_a) | |
if self.only_out_a: | |
return hidden_states_a | |
else: | |
hidden_states_b = self.b_to_out(hidden_states_b) | |
return hidden_states_a, hidden_states_b | |
class FluxJointTransformerBlock(torch.nn.Module): | |
def __init__(self, dim, num_attention_heads): | |
super().__init__() | |
self.norm1_a = AdaLayerNorm(dim) | |
self.norm1_b = AdaLayerNorm(dim) | |
self.attn = FluxJointAttention(dim, dim, num_attention_heads, dim // num_attention_heads) | |
self.norm2_a = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff_a = torch.nn.Sequential( | |
torch.nn.Linear(dim, dim*4), | |
torch.nn.GELU(approximate="tanh"), | |
torch.nn.Linear(dim*4, dim) | |
) | |
self.norm2_b = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff_b = torch.nn.Sequential( | |
torch.nn.Linear(dim, dim*4), | |
torch.nn.GELU(approximate="tanh"), | |
torch.nn.Linear(dim*4, dim) | |
) | |
def forward(self, hidden_states_a, hidden_states_b, temb, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None): | |
norm_hidden_states_a, gate_msa_a, shift_mlp_a, scale_mlp_a, gate_mlp_a = self.norm1_a(hidden_states_a, emb=temb) | |
norm_hidden_states_b, gate_msa_b, shift_mlp_b, scale_mlp_b, gate_mlp_b = self.norm1_b(hidden_states_b, emb=temb) | |
# Attention | |
attn_output_a, attn_output_b = self.attn(norm_hidden_states_a, norm_hidden_states_b, image_rotary_emb, attn_mask, ipadapter_kwargs_list) | |
# Part A | |
hidden_states_a = hidden_states_a + gate_msa_a * attn_output_a | |
norm_hidden_states_a = self.norm2_a(hidden_states_a) * (1 + scale_mlp_a) + shift_mlp_a | |
hidden_states_a = hidden_states_a + gate_mlp_a * self.ff_a(norm_hidden_states_a) | |
# Part B | |
hidden_states_b = hidden_states_b + gate_msa_b * attn_output_b | |
norm_hidden_states_b = self.norm2_b(hidden_states_b) * (1 + scale_mlp_b) + shift_mlp_b | |
hidden_states_b = hidden_states_b + gate_mlp_b * self.ff_b(norm_hidden_states_b) | |
return hidden_states_a, hidden_states_b | |
class FluxSingleAttention(torch.nn.Module): | |
def __init__(self, dim_a, dim_b, num_heads, head_dim): | |
super().__init__() | |
self.num_heads = num_heads | |
self.head_dim = head_dim | |
self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3) | |
self.norm_q_a = RMSNorm(head_dim, eps=1e-6) | |
self.norm_k_a = RMSNorm(head_dim, eps=1e-6) | |
def apply_rope(self, xq, xk, freqs_cis): | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
def forward(self, hidden_states, image_rotary_emb): | |
batch_size = hidden_states.shape[0] | |
qkv_a = self.a_to_qkv(hidden_states) | |
qkv_a = qkv_a.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2) | |
q_a, k_a, v = qkv_a.chunk(3, dim=1) | |
q_a, k_a = self.norm_q_a(q_a), self.norm_k_a(k_a) | |
q, k = self.apply_rope(q_a, k_a, image_rotary_emb) | |
hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) | |
hidden_states = hidden_states.to(q.dtype) | |
return hidden_states | |
class AdaLayerNormSingle(torch.nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.silu = torch.nn.SiLU() | |
self.linear = torch.nn.Linear(dim, 3 * dim, bias=True) | |
self.norm = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
def forward(self, x, emb): | |
emb = self.linear(self.silu(emb)) | |
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1) | |
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
return x, gate_msa | |
class FluxSingleTransformerBlock(torch.nn.Module): | |
def __init__(self, dim, num_attention_heads): | |
super().__init__() | |
self.num_heads = num_attention_heads | |
self.head_dim = dim // num_attention_heads | |
self.dim = dim | |
self.norm = AdaLayerNormSingle(dim) | |
self.to_qkv_mlp = torch.nn.Linear(dim, dim * (3 + 4)) | |
self.norm_q_a = RMSNorm(self.head_dim, eps=1e-6) | |
self.norm_k_a = RMSNorm(self.head_dim, eps=1e-6) | |
self.proj_out = torch.nn.Linear(dim * 5, dim) | |
def apply_rope(self, xq, xk, freqs_cis): | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
def process_attention(self, hidden_states, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None): | |
batch_size = hidden_states.shape[0] | |
qkv = hidden_states.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2) | |
q, k, v = qkv.chunk(3, dim=1) | |
q, k = self.norm_q_a(q), self.norm_k_a(k) | |
q, k = self.apply_rope(q, k, image_rotary_emb) | |
hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) | |
hidden_states = hidden_states.to(q.dtype) | |
if ipadapter_kwargs_list is not None: | |
hidden_states = interact_with_ipadapter(hidden_states, q, **ipadapter_kwargs_list) | |
return hidden_states | |
def forward(self, hidden_states_a, hidden_states_b, temb, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None): | |
residual = hidden_states_a | |
norm_hidden_states, gate = self.norm(hidden_states_a, emb=temb) | |
hidden_states_a = self.to_qkv_mlp(norm_hidden_states) | |
attn_output, mlp_hidden_states = hidden_states_a[:, :, :self.dim * 3], hidden_states_a[:, :, self.dim * 3:] | |
attn_output = self.process_attention(attn_output, image_rotary_emb, attn_mask, ipadapter_kwargs_list) | |
mlp_hidden_states = torch.nn.functional.gelu(mlp_hidden_states, approximate="tanh") | |
hidden_states_a = torch.cat([attn_output, mlp_hidden_states], dim=2) | |
hidden_states_a = gate.unsqueeze(1) * self.proj_out(hidden_states_a) | |
hidden_states_a = residual + hidden_states_a | |
return hidden_states_a, hidden_states_b | |
class AdaLayerNormContinuous(torch.nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.silu = torch.nn.SiLU() | |
self.linear = torch.nn.Linear(dim, dim * 2, bias=True) | |
self.norm = torch.nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False) | |
def forward(self, x, conditioning): | |
emb = self.linear(self.silu(conditioning)) | |
scale, shift = torch.chunk(emb, 2, dim=1) | |
x = self.norm(x) * (1 + scale)[:, None] + shift[:, None] | |
return x | |
class FluxDiT(torch.nn.Module): | |
def __init__(self, disable_guidance_embedder=False): | |
super().__init__() | |
self.pos_embedder = RoPEEmbedding(3072, 10000, [16, 56, 56]) | |
self.time_embedder = TimestepEmbeddings(256, 3072) | |
self.guidance_embedder = None if disable_guidance_embedder else TimestepEmbeddings(256, 3072) | |
self.pooled_text_embedder = torch.nn.Sequential(torch.nn.Linear(768, 3072), torch.nn.SiLU(), torch.nn.Linear(3072, 3072)) | |
self.context_embedder = torch.nn.Linear(4096, 3072) | |
self.x_embedder = torch.nn.Linear(64, 3072) | |
self.blocks = torch.nn.ModuleList([FluxJointTransformerBlock(3072, 24) for _ in range(19)]) | |
self.single_blocks = torch.nn.ModuleList([FluxSingleTransformerBlock(3072, 24) for _ in range(38)]) | |
self.final_norm_out = AdaLayerNormContinuous(3072) | |
self.final_proj_out = torch.nn.Linear(3072, 64) | |
def patchify(self, hidden_states): | |
hidden_states = rearrange(hidden_states, "B C (H P) (W Q) -> B (H W) (C P Q)", P=2, Q=2) | |
return hidden_states | |
def unpatchify(self, hidden_states, height, width): | |
hidden_states = rearrange(hidden_states, "B (H W) (C P Q) -> B C (H P) (W Q)", P=2, Q=2, H=height//2, W=width//2) | |
return hidden_states | |
def prepare_image_ids(self, latents): | |
batch_size, _, height, width = latents.shape | |
latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] | |
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] | |
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) | |
latent_image_ids = latent_image_ids.reshape( | |
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
) | |
latent_image_ids = latent_image_ids.to(device=latents.device, dtype=latents.dtype) | |
return latent_image_ids | |
def tiled_forward( | |
self, | |
hidden_states, | |
timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, | |
tile_size=128, tile_stride=64, | |
**kwargs | |
): | |
# Due to the global positional embedding, we cannot implement layer-wise tiled forward. | |
hidden_states = TileWorker().tiled_forward( | |
lambda x: self.forward(x, timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None), | |
hidden_states, | |
tile_size, | |
tile_stride, | |
tile_device=hidden_states.device, | |
tile_dtype=hidden_states.dtype | |
) | |
return hidden_states | |
def construct_mask(self, entity_masks, prompt_seq_len, image_seq_len): | |
N = len(entity_masks) | |
batch_size = entity_masks[0].shape[0] | |
total_seq_len = N * prompt_seq_len + image_seq_len | |
patched_masks = [self.patchify(entity_masks[i]) for i in range(N)] | |
attention_mask = torch.ones((batch_size, total_seq_len, total_seq_len), dtype=torch.bool).to(device=entity_masks[0].device) | |
image_start = N * prompt_seq_len | |
image_end = N * prompt_seq_len + image_seq_len | |
# prompt-image mask | |
for i in range(N): | |
prompt_start = i * prompt_seq_len | |
prompt_end = (i + 1) * prompt_seq_len | |
image_mask = torch.sum(patched_masks[i], dim=-1) > 0 | |
image_mask = image_mask.unsqueeze(1).repeat(1, prompt_seq_len, 1) | |
# prompt update with image | |
attention_mask[:, prompt_start:prompt_end, image_start:image_end] = image_mask | |
# image update with prompt | |
attention_mask[:, image_start:image_end, prompt_start:prompt_end] = image_mask.transpose(1, 2) | |
# prompt-prompt mask | |
for i in range(N): | |
for j in range(N): | |
if i != j: | |
prompt_start_i = i * prompt_seq_len | |
prompt_end_i = (i + 1) * prompt_seq_len | |
prompt_start_j = j * prompt_seq_len | |
prompt_end_j = (j + 1) * prompt_seq_len | |
attention_mask[:, prompt_start_i:prompt_end_i, prompt_start_j:prompt_end_j] = False | |
attention_mask = attention_mask.float() | |
attention_mask[attention_mask == 0] = float('-inf') | |
attention_mask[attention_mask == 1] = 0 | |
return attention_mask | |
def process_entity_masks(self, hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids): | |
repeat_dim = hidden_states.shape[1] | |
max_masks = 0 | |
attention_mask = None | |
prompt_embs = [prompt_emb] | |
if entity_masks is not None: | |
# entity_masks | |
batch_size, max_masks = entity_masks.shape[0], entity_masks.shape[1] | |
entity_masks = entity_masks.repeat(1, 1, repeat_dim, 1, 1) | |
entity_masks = [entity_masks[:, i, None].squeeze(1) for i in range(max_masks)] | |
# global mask | |
global_mask = torch.ones_like(entity_masks[0]).to(device=hidden_states.device, dtype=hidden_states.dtype) | |
entity_masks = entity_masks + [global_mask] # append global to last | |
# attention mask | |
attention_mask = self.construct_mask(entity_masks, prompt_emb.shape[1], hidden_states.shape[1]) | |
attention_mask = attention_mask.to(device=hidden_states.device, dtype=hidden_states.dtype) | |
attention_mask = attention_mask.unsqueeze(1) | |
# embds: n_masks * b * seq * d | |
local_embs = [entity_prompt_emb[:, i, None].squeeze(1) for i in range(max_masks)] | |
prompt_embs = local_embs + prompt_embs # append global to last | |
prompt_embs = [self.context_embedder(prompt_emb) for prompt_emb in prompt_embs] | |
prompt_emb = torch.cat(prompt_embs, dim=1) | |
# positional embedding | |
text_ids = torch.cat([text_ids] * (max_masks + 1), dim=1) | |
image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1)) | |
return prompt_emb, image_rotary_emb, attention_mask | |
def forward( | |
self, | |
hidden_states, | |
timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None, | |
tiled=False, tile_size=128, tile_stride=64, entity_prompt_emb=None, entity_masks=None, | |
use_gradient_checkpointing=False, | |
**kwargs | |
): | |
if tiled: | |
return self.tiled_forward( | |
hidden_states, | |
timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, | |
tile_size=tile_size, tile_stride=tile_stride, | |
**kwargs | |
) | |
if image_ids is None: | |
image_ids = self.prepare_image_ids(hidden_states) | |
conditioning = self.time_embedder(timestep, hidden_states.dtype) + self.pooled_text_embedder(pooled_prompt_emb) | |
if self.guidance_embedder is not None: | |
guidance = guidance * 1000 | |
conditioning = conditioning + self.guidance_embedder(guidance, hidden_states.dtype) | |
height, width = hidden_states.shape[-2:] | |
hidden_states = self.patchify(hidden_states) | |
hidden_states = self.x_embedder(hidden_states) | |
if entity_prompt_emb is not None and entity_masks is not None: | |
prompt_emb, image_rotary_emb, attention_mask = self.process_entity_masks(hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids) | |
else: | |
prompt_emb = self.context_embedder(prompt_emb) | |
image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1)) | |
attention_mask = None | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
for block in self.blocks: | |
if self.training and use_gradient_checkpointing: | |
hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask) | |
hidden_states = torch.cat([prompt_emb, hidden_states], dim=1) | |
for block in self.single_blocks: | |
if self.training and use_gradient_checkpointing: | |
hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask) | |
hidden_states = hidden_states[:, prompt_emb.shape[1]:] | |
hidden_states = self.final_norm_out(hidden_states, conditioning) | |
hidden_states = self.final_proj_out(hidden_states) | |
hidden_states = self.unpatchify(hidden_states, height, width) | |
return hidden_states | |
def quantize(self): | |
def cast_to(weight, dtype=None, device=None, copy=False): | |
if device is None or weight.device == device: | |
if not copy: | |
if dtype is None or weight.dtype == dtype: | |
return weight | |
return weight.to(dtype=dtype, copy=copy) | |
r = torch.empty_like(weight, dtype=dtype, device=device) | |
r.copy_(weight) | |
return r | |
def cast_weight(s, input=None, dtype=None, device=None): | |
if input is not None: | |
if dtype is None: | |
dtype = input.dtype | |
if device is None: | |
device = input.device | |
weight = cast_to(s.weight, dtype, device) | |
return weight | |
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None): | |
if input is not None: | |
if dtype is None: | |
dtype = input.dtype | |
if bias_dtype is None: | |
bias_dtype = dtype | |
if device is None: | |
device = input.device | |
bias = None | |
weight = cast_to(s.weight, dtype, device) | |
bias = cast_to(s.bias, bias_dtype, device) | |
return weight, bias | |
class quantized_layer: | |
class Linear(torch.nn.Linear): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self,input,**kwargs): | |
weight,bias= cast_bias_weight(self,input) | |
return torch.nn.functional.linear(input,weight,bias) | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, module): | |
super().__init__() | |
self.module = module | |
def forward(self,hidden_states,**kwargs): | |
weight= cast_weight(self.module,hidden_states) | |
input_dtype = hidden_states.dtype | |
variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps) | |
hidden_states = hidden_states.to(input_dtype) * weight | |
return hidden_states | |
def replace_layer(model): | |
for name, module in model.named_children(): | |
if isinstance(module, torch.nn.Linear): | |
with init_weights_on_device(): | |
new_layer = quantized_layer.Linear(module.in_features,module.out_features) | |
new_layer.weight = module.weight | |
if module.bias is not None: | |
new_layer.bias = module.bias | |
# del module | |
setattr(model, name, new_layer) | |
elif isinstance(module, RMSNorm): | |
if hasattr(module,"quantized"): | |
continue | |
module.quantized= True | |
new_layer = quantized_layer.RMSNorm(module) | |
setattr(model, name, new_layer) | |
else: | |
replace_layer(module) | |
replace_layer(self) | |
def state_dict_converter(): | |
return FluxDiTStateDictConverter() | |
class FluxDiTStateDictConverter: | |
def __init__(self): | |
pass | |
def from_diffusers(self, state_dict): | |
global_rename_dict = { | |
"context_embedder": "context_embedder", | |
"x_embedder": "x_embedder", | |
"time_text_embed.timestep_embedder.linear_1": "time_embedder.timestep_embedder.0", | |
"time_text_embed.timestep_embedder.linear_2": "time_embedder.timestep_embedder.2", | |
"time_text_embed.guidance_embedder.linear_1": "guidance_embedder.timestep_embedder.0", | |
"time_text_embed.guidance_embedder.linear_2": "guidance_embedder.timestep_embedder.2", | |
"time_text_embed.text_embedder.linear_1": "pooled_text_embedder.0", | |
"time_text_embed.text_embedder.linear_2": "pooled_text_embedder.2", | |
"norm_out.linear": "final_norm_out.linear", | |
"proj_out": "final_proj_out", | |
} | |
rename_dict = { | |
"proj_out": "proj_out", | |
"norm1.linear": "norm1_a.linear", | |
"norm1_context.linear": "norm1_b.linear", | |
"attn.to_q": "attn.a_to_q", | |
"attn.to_k": "attn.a_to_k", | |
"attn.to_v": "attn.a_to_v", | |
"attn.to_out.0": "attn.a_to_out", | |
"attn.add_q_proj": "attn.b_to_q", | |
"attn.add_k_proj": "attn.b_to_k", | |
"attn.add_v_proj": "attn.b_to_v", | |
"attn.to_add_out": "attn.b_to_out", | |
"ff.net.0.proj": "ff_a.0", | |
"ff.net.2": "ff_a.2", | |
"ff_context.net.0.proj": "ff_b.0", | |
"ff_context.net.2": "ff_b.2", | |
"attn.norm_q": "attn.norm_q_a", | |
"attn.norm_k": "attn.norm_k_a", | |
"attn.norm_added_q": "attn.norm_q_b", | |
"attn.norm_added_k": "attn.norm_k_b", | |
} | |
rename_dict_single = { | |
"attn.to_q": "a_to_q", | |
"attn.to_k": "a_to_k", | |
"attn.to_v": "a_to_v", | |
"attn.norm_q": "norm_q_a", | |
"attn.norm_k": "norm_k_a", | |
"norm.linear": "norm.linear", | |
"proj_mlp": "proj_in_besides_attn", | |
"proj_out": "proj_out", | |
} | |
state_dict_ = {} | |
for name, param in state_dict.items(): | |
if name.endswith(".weight") or name.endswith(".bias"): | |
suffix = ".weight" if name.endswith(".weight") else ".bias" | |
prefix = name[:-len(suffix)] | |
if prefix in global_rename_dict: | |
state_dict_[global_rename_dict[prefix] + suffix] = param | |
elif prefix.startswith("transformer_blocks."): | |
names = prefix.split(".") | |
names[0] = "blocks" | |
middle = ".".join(names[2:]) | |
if middle in rename_dict: | |
name_ = ".".join(names[:2] + [rename_dict[middle]] + [suffix[1:]]) | |
state_dict_[name_] = param | |
elif prefix.startswith("single_transformer_blocks."): | |
names = prefix.split(".") | |
names[0] = "single_blocks" | |
middle = ".".join(names[2:]) | |
if middle in rename_dict_single: | |
name_ = ".".join(names[:2] + [rename_dict_single[middle]] + [suffix[1:]]) | |
state_dict_[name_] = param | |
else: | |
pass | |
else: | |
pass | |
for name in list(state_dict_.keys()): | |
if "single_blocks." in name and ".a_to_q." in name: | |
mlp = state_dict_.get(name.replace(".a_to_q.", ".proj_in_besides_attn."), None) | |
if mlp is None: | |
mlp = torch.zeros(4 * state_dict_[name].shape[0], | |
*state_dict_[name].shape[1:], | |
dtype=state_dict_[name].dtype) | |
else: | |
state_dict_.pop(name.replace(".a_to_q.", ".proj_in_besides_attn.")) | |
param = torch.concat([ | |
state_dict_.pop(name), | |
state_dict_.pop(name.replace(".a_to_q.", ".a_to_k.")), | |
state_dict_.pop(name.replace(".a_to_q.", ".a_to_v.")), | |
mlp, | |
], dim=0) | |
name_ = name.replace(".a_to_q.", ".to_qkv_mlp.") | |
state_dict_[name_] = param | |
for name in list(state_dict_.keys()): | |
for component in ["a", "b"]: | |
if f".{component}_to_q." in name: | |
name_ = name.replace(f".{component}_to_q.", f".{component}_to_qkv.") | |
param = torch.concat([ | |
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")], | |
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")], | |
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")], | |
], dim=0) | |
state_dict_[name_] = param | |
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_q.")) | |
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_k.")) | |
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_v.")) | |
return state_dict_ | |
def from_civitai(self, state_dict): | |
rename_dict = { | |
"time_in.in_layer.bias": "time_embedder.timestep_embedder.0.bias", | |
"time_in.in_layer.weight": "time_embedder.timestep_embedder.0.weight", | |
"time_in.out_layer.bias": "time_embedder.timestep_embedder.2.bias", | |
"time_in.out_layer.weight": "time_embedder.timestep_embedder.2.weight", | |
"txt_in.bias": "context_embedder.bias", | |
"txt_in.weight": "context_embedder.weight", | |
"vector_in.in_layer.bias": "pooled_text_embedder.0.bias", | |
"vector_in.in_layer.weight": "pooled_text_embedder.0.weight", | |
"vector_in.out_layer.bias": "pooled_text_embedder.2.bias", | |
"vector_in.out_layer.weight": "pooled_text_embedder.2.weight", | |
"final_layer.linear.bias": "final_proj_out.bias", | |
"final_layer.linear.weight": "final_proj_out.weight", | |
"guidance_in.in_layer.bias": "guidance_embedder.timestep_embedder.0.bias", | |
"guidance_in.in_layer.weight": "guidance_embedder.timestep_embedder.0.weight", | |
"guidance_in.out_layer.bias": "guidance_embedder.timestep_embedder.2.bias", | |
"guidance_in.out_layer.weight": "guidance_embedder.timestep_embedder.2.weight", | |
"img_in.bias": "x_embedder.bias", | |
"img_in.weight": "x_embedder.weight", | |
"final_layer.adaLN_modulation.1.weight": "final_norm_out.linear.weight", | |
"final_layer.adaLN_modulation.1.bias": "final_norm_out.linear.bias", | |
} | |
suffix_rename_dict = { | |
"img_attn.norm.key_norm.scale": "attn.norm_k_a.weight", | |
"img_attn.norm.query_norm.scale": "attn.norm_q_a.weight", | |
"img_attn.proj.bias": "attn.a_to_out.bias", | |
"img_attn.proj.weight": "attn.a_to_out.weight", | |
"img_attn.qkv.bias": "attn.a_to_qkv.bias", | |
"img_attn.qkv.weight": "attn.a_to_qkv.weight", | |
"img_mlp.0.bias": "ff_a.0.bias", | |
"img_mlp.0.weight": "ff_a.0.weight", | |
"img_mlp.2.bias": "ff_a.2.bias", | |
"img_mlp.2.weight": "ff_a.2.weight", | |
"img_mod.lin.bias": "norm1_a.linear.bias", | |
"img_mod.lin.weight": "norm1_a.linear.weight", | |
"txt_attn.norm.key_norm.scale": "attn.norm_k_b.weight", | |
"txt_attn.norm.query_norm.scale": "attn.norm_q_b.weight", | |
"txt_attn.proj.bias": "attn.b_to_out.bias", | |
"txt_attn.proj.weight": "attn.b_to_out.weight", | |
"txt_attn.qkv.bias": "attn.b_to_qkv.bias", | |
"txt_attn.qkv.weight": "attn.b_to_qkv.weight", | |
"txt_mlp.0.bias": "ff_b.0.bias", | |
"txt_mlp.0.weight": "ff_b.0.weight", | |
"txt_mlp.2.bias": "ff_b.2.bias", | |
"txt_mlp.2.weight": "ff_b.2.weight", | |
"txt_mod.lin.bias": "norm1_b.linear.bias", | |
"txt_mod.lin.weight": "norm1_b.linear.weight", | |
"linear1.bias": "to_qkv_mlp.bias", | |
"linear1.weight": "to_qkv_mlp.weight", | |
"linear2.bias": "proj_out.bias", | |
"linear2.weight": "proj_out.weight", | |
"modulation.lin.bias": "norm.linear.bias", | |
"modulation.lin.weight": "norm.linear.weight", | |
"norm.key_norm.scale": "norm_k_a.weight", | |
"norm.query_norm.scale": "norm_q_a.weight", | |
} | |
state_dict_ = {} | |
for name, param in state_dict.items(): | |
if name.startswith("model.diffusion_model."): | |
name = name[len("model.diffusion_model."):] | |
names = name.split(".") | |
if name in rename_dict: | |
rename = rename_dict[name] | |
if name.startswith("final_layer.adaLN_modulation.1."): | |
param = torch.concat([param[3072:], param[:3072]], dim=0) | |
state_dict_[rename] = param | |
elif names[0] == "double_blocks": | |
rename = f"blocks.{names[1]}." + suffix_rename_dict[".".join(names[2:])] | |
state_dict_[rename] = param | |
elif names[0] == "single_blocks": | |
if ".".join(names[2:]) in suffix_rename_dict: | |
rename = f"single_blocks.{names[1]}." + suffix_rename_dict[".".join(names[2:])] | |
state_dict_[rename] = param | |
else: | |
pass | |
if "guidance_embedder.timestep_embedder.0.weight" not in state_dict_: | |
return state_dict_, {"disable_guidance_embedder": True} | |
else: | |
return state_dict_ | |