Spaces:
Running
on
L40S
Running
on
L40S
from .svd_image_encoder import SVDImageEncoder | |
from .sd3_dit import RMSNorm | |
from transformers import CLIPImageProcessor | |
import torch | |
class MLPProjModel(torch.nn.Module): | |
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4): | |
super().__init__() | |
self.cross_attention_dim = cross_attention_dim | |
self.num_tokens = num_tokens | |
self.proj = torch.nn.Sequential( | |
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), | |
torch.nn.GELU(), | |
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), | |
) | |
self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
def forward(self, id_embeds): | |
x = self.proj(id_embeds) | |
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) | |
x = self.norm(x) | |
return x | |
class IpAdapterModule(torch.nn.Module): | |
def __init__(self, num_attention_heads, attention_head_dim, input_dim): | |
super().__init__() | |
self.num_heads = num_attention_heads | |
self.head_dim = attention_head_dim | |
output_dim = num_attention_heads * attention_head_dim | |
self.to_k_ip = torch.nn.Linear(input_dim, output_dim, bias=False) | |
self.to_v_ip = torch.nn.Linear(input_dim, output_dim, bias=False) | |
self.norm_added_k = RMSNorm(attention_head_dim, eps=1e-5, elementwise_affine=False) | |
def forward(self, hidden_states): | |
batch_size = hidden_states.shape[0] | |
# ip_k | |
ip_k = self.to_k_ip(hidden_states) | |
ip_k = ip_k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
ip_k = self.norm_added_k(ip_k) | |
# ip_v | |
ip_v = self.to_v_ip(hidden_states) | |
ip_v = ip_v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
return ip_k, ip_v | |
class FluxIpAdapter(torch.nn.Module): | |
def __init__(self, num_attention_heads=24, attention_head_dim=128, cross_attention_dim=4096, num_tokens=128, num_blocks=57): | |
super().__init__() | |
self.ipadapter_modules = torch.nn.ModuleList([IpAdapterModule(num_attention_heads, attention_head_dim, cross_attention_dim) for _ in range(num_blocks)]) | |
self.image_proj = MLPProjModel(cross_attention_dim=cross_attention_dim, id_embeddings_dim=1152, num_tokens=num_tokens) | |
self.set_adapter() | |
def set_adapter(self): | |
self.call_block_id = {i:i for i in range(len(self.ipadapter_modules))} | |
def forward(self, hidden_states, scale=1.0): | |
hidden_states = self.image_proj(hidden_states) | |
hidden_states = hidden_states.view(1, -1, hidden_states.shape[-1]) | |
ip_kv_dict = {} | |
for block_id in self.call_block_id: | |
ipadapter_id = self.call_block_id[block_id] | |
ip_k, ip_v = self.ipadapter_modules[ipadapter_id](hidden_states) | |
ip_kv_dict[block_id] = { | |
"ip_k": ip_k, | |
"ip_v": ip_v, | |
"scale": scale | |
} | |
return ip_kv_dict | |
def state_dict_converter(): | |
return FluxIpAdapterStateDictConverter() | |
class FluxIpAdapterStateDictConverter: | |
def __init__(self): | |
pass | |
def from_diffusers(self, state_dict): | |
state_dict_ = {} | |
for name in state_dict["ip_adapter"]: | |
name_ = 'ipadapter_modules.' + name | |
state_dict_[name_] = state_dict["ip_adapter"][name] | |
for name in state_dict["image_proj"]: | |
name_ = "image_proj." + name | |
state_dict_[name_] = state_dict["image_proj"][name] | |
return state_dict_ | |
def from_civitai(self, state_dict): | |
return self.from_diffusers(state_dict) | |