ReCamMaster / diffsynth /models /hunyuan_video_text_encoder.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
raw
history blame
2.72 kB
from transformers import LlamaModel, LlamaConfig, DynamicCache, LlavaForConditionalGeneration
from copy import deepcopy
import torch
class HunyuanVideoLLMEncoder(LlamaModel):
def __init__(self, config: LlamaConfig):
super().__init__(config)
self.auto_offload = False
def enable_auto_offload(self, **kwargs):
self.auto_offload = True
def forward(self, input_ids, attention_mask, hidden_state_skip_layer=2):
embed_tokens = deepcopy(self.embed_tokens).to(input_ids.device) if self.auto_offload else self.embed_tokens
inputs_embeds = embed_tokens(input_ids)
past_key_values = DynamicCache()
cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device)
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, None, False)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
rotary_emb = deepcopy(self.rotary_emb).to(input_ids.device) if self.auto_offload else self.rotary_emb
position_embeddings = rotary_emb(hidden_states, position_ids)
# decoder layers
for layer_id, decoder_layer in enumerate(self.layers):
if self.auto_offload:
decoder_layer = deepcopy(decoder_layer).to(hidden_states.device)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=False,
use_cache=True,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if layer_id + hidden_state_skip_layer + 1 >= len(self.layers):
break
return hidden_states
class HunyuanVideoMLLMEncoder(LlavaForConditionalGeneration):
def __init__(self, config):
super().__init__(config)
self.auto_offload = False
def enable_auto_offload(self, **kwargs):
self.auto_offload = True
# TODO: implement the low VRAM inference for MLLM.
def forward(self, input_ids, pixel_values, attention_mask, hidden_state_skip_layer=2):
outputs = super().forward(input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
pixel_values=pixel_values)
hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)]
return hidden_state