ReCamMaster / diffsynth /models /hunyuan_video_vae_decoder.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
raw
history blame
19.3 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
import numpy as np
from tqdm import tqdm
from einops import repeat
class CausalConv3d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride=1, dilation=1, pad_mode='replicate', **kwargs):
super().__init__()
self.pad_mode = pad_mode
self.time_causal_padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size - 1, 0
) # W, H, T
self.conv = nn.Conv3d(in_channel, out_channel, kernel_size, stride=stride, dilation=dilation, **kwargs)
def forward(self, x):
x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
return self.conv(x)
class UpsampleCausal3D(nn.Module):
def __init__(self, channels, use_conv=False, out_channels=None, kernel_size=None, bias=True, upsample_factor=(2, 2, 2)):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.upsample_factor = upsample_factor
self.conv = None
if use_conv:
kernel_size = 3 if kernel_size is None else kernel_size
self.conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, bias=bias)
def forward(self, hidden_states):
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
dtype = hidden_states.dtype
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(torch.float32)
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
hidden_states = hidden_states.contiguous()
# interpolate
B, C, T, H, W = hidden_states.shape
first_h, other_h = hidden_states.split((1, T - 1), dim=2)
if T > 1:
other_h = F.interpolate(other_h, scale_factor=self.upsample_factor, mode="nearest")
first_h = F.interpolate(first_h.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest").unsqueeze(2)
hidden_states = torch.cat((first_h, other_h), dim=2) if T > 1 else first_h
# If the input is bfloat16, we cast back to bfloat16
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(dtype)
if self.conv:
hidden_states = self.conv(hidden_states)
return hidden_states
class ResnetBlockCausal3D(nn.Module):
def __init__(self, in_channels, out_channels=None, dropout=0.0, groups=32, eps=1e-6, conv_shortcut_bias=True):
super().__init__()
self.pre_norm = True
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1)
self.norm2 = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
self.conv2 = CausalConv3d(out_channels, out_channels, kernel_size=3, stride=1)
self.dropout = nn.Dropout(dropout)
self.nonlinearity = nn.SiLU()
self.conv_shortcut = None
if in_channels != out_channels:
self.conv_shortcut = CausalConv3d(in_channels, out_channels, kernel_size=1, stride=1, bias=conv_shortcut_bias)
def forward(self, input_tensor):
hidden_states = input_tensor
# conv1
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
# conv2
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
# shortcut
if self.conv_shortcut is not None:
input_tensor = (self.conv_shortcut(input_tensor))
# shortcut and scale
output_tensor = input_tensor + hidden_states
return output_tensor
def prepare_causal_attention_mask(n_frame, n_hw, dtype, device, batch_size=None):
seq_len = n_frame * n_hw
mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device)
for i in range(seq_len):
i_frame = i // n_hw
mask[i, :(i_frame + 1) * n_hw] = 0
if batch_size is not None:
mask = mask.unsqueeze(0).expand(batch_size, -1, -1)
return mask
class Attention(nn.Module):
def __init__(self,
in_channels,
num_heads,
head_dim,
num_groups=32,
dropout=0.0,
eps=1e-6,
bias=True,
residual_connection=True):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.residual_connection = residual_connection
dim_inner = head_dim * num_heads
self.group_norm = nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True)
self.to_q = nn.Linear(in_channels, dim_inner, bias=bias)
self.to_k = nn.Linear(in_channels, dim_inner, bias=bias)
self.to_v = nn.Linear(in_channels, dim_inner, bias=bias)
self.to_out = nn.Sequential(nn.Linear(dim_inner, in_channels, bias=bias), nn.Dropout(dropout))
def forward(self, input_tensor, attn_mask=None):
hidden_states = self.group_norm(input_tensor.transpose(1, 2)).transpose(1, 2)
batch_size = hidden_states.shape[0]
q = self.to_q(hidden_states)
k = self.to_k(hidden_states)
v = self.to_v(hidden_states)
q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
if attn_mask is not None:
attn_mask = attn_mask.view(batch_size, self.num_heads, -1, attn_mask.shape[-1])
hidden_states = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
hidden_states = self.to_out(hidden_states)
if self.residual_connection:
output_tensor = input_tensor + hidden_states
return output_tensor
class UNetMidBlockCausal3D(nn.Module):
def __init__(self, in_channels, dropout=0.0, num_layers=1, eps=1e-6, num_groups=32, attention_head_dim=None):
super().__init__()
resnets = [
ResnetBlockCausal3D(
in_channels=in_channels,
out_channels=in_channels,
dropout=dropout,
groups=num_groups,
eps=eps,
)
]
attentions = []
attention_head_dim = attention_head_dim or in_channels
for _ in range(num_layers):
attentions.append(
Attention(
in_channels,
num_heads=in_channels // attention_head_dim,
head_dim=attention_head_dim,
num_groups=num_groups,
dropout=dropout,
eps=eps,
bias=True,
residual_connection=True,
))
resnets.append(
ResnetBlockCausal3D(
in_channels=in_channels,
out_channels=in_channels,
dropout=dropout,
groups=num_groups,
eps=eps,
))
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states):
hidden_states = self.resnets[0](hidden_states)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
B, C, T, H, W = hidden_states.shape
hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c")
attn_mask = prepare_causal_attention_mask(T, H * W, hidden_states.dtype, hidden_states.device, batch_size=B)
hidden_states = attn(hidden_states, attn_mask=attn_mask)
hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=T, h=H, w=W)
hidden_states = resnet(hidden_states)
return hidden_states
class UpDecoderBlockCausal3D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
dropout=0.0,
num_layers=1,
eps=1e-6,
num_groups=32,
add_upsample=True,
upsample_scale_factor=(2, 2, 2),
):
super().__init__()
resnets = []
for i in range(num_layers):
cur_in_channel = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlockCausal3D(
in_channels=cur_in_channel,
out_channels=out_channels,
groups=num_groups,
dropout=dropout,
eps=eps,
))
self.resnets = nn.ModuleList(resnets)
self.upsamplers = None
if add_upsample:
self.upsamplers = nn.ModuleList([
UpsampleCausal3D(
out_channels,
use_conv=True,
out_channels=out_channels,
upsample_factor=upsample_scale_factor,
)
])
def forward(self, hidden_states):
for resnet in self.resnets:
hidden_states = resnet(hidden_states)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
class DecoderCausal3D(nn.Module):
def __init__(
self,
in_channels=16,
out_channels=3,
eps=1e-6,
dropout=0.0,
block_out_channels=[128, 256, 512, 512],
layers_per_block=2,
num_groups=32,
time_compression_ratio=4,
spatial_compression_ratio=8,
gradient_checkpointing=False,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
self.up_blocks = nn.ModuleList([])
# mid
self.mid_block = UNetMidBlockCausal3D(
in_channels=block_out_channels[-1],
dropout=dropout,
eps=eps,
num_groups=num_groups,
attention_head_dim=block_out_channels[-1],
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i in range(len(block_out_channels)):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
num_time_upsample_layers = int(np.log2(time_compression_ratio))
add_spatial_upsample = bool(i < num_spatial_upsample_layers)
add_time_upsample = bool(i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block)
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
up_block = UpDecoderBlockCausal3D(
in_channels=prev_output_channel,
out_channels=output_channel,
dropout=dropout,
num_layers=layers_per_block + 1,
eps=eps,
num_groups=num_groups,
add_upsample=bool(add_spatial_upsample or add_time_upsample),
upsample_scale_factor=upsample_scale_factor,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups, eps=eps)
self.conv_act = nn.SiLU()
self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
self.gradient_checkpointing = gradient_checkpointing
def forward(self, hidden_states):
hidden_states = self.conv_in(hidden_states)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
# middle
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block),
hidden_states,
use_reentrant=False,
)
# up
for up_block in self.up_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block),
hidden_states,
use_reentrant=False,
)
else:
# middle
hidden_states = self.mid_block(hidden_states)
# up
for up_block in self.up_blocks:
hidden_states = up_block(hidden_states)
# post-process
hidden_states = self.conv_norm_out(hidden_states)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class HunyuanVideoVAEDecoder(nn.Module):
def __init__(
self,
in_channels=16,
out_channels=3,
eps=1e-6,
dropout=0.0,
block_out_channels=[128, 256, 512, 512],
layers_per_block=2,
num_groups=32,
time_compression_ratio=4,
spatial_compression_ratio=8,
gradient_checkpointing=False,
):
super().__init__()
self.decoder = DecoderCausal3D(
in_channels=in_channels,
out_channels=out_channels,
eps=eps,
dropout=dropout,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
num_groups=num_groups,
time_compression_ratio=time_compression_ratio,
spatial_compression_ratio=spatial_compression_ratio,
gradient_checkpointing=gradient_checkpointing,
)
self.post_quant_conv = nn.Conv3d(in_channels, in_channels, kernel_size=1)
self.scaling_factor = 0.476986
def forward(self, latents):
latents = latents / self.scaling_factor
latents = self.post_quant_conv(latents)
dec = self.decoder(latents)
return dec
def build_1d_mask(self, length, left_bound, right_bound, border_width):
x = torch.ones((length,))
if not left_bound:
x[:border_width] = (torch.arange(border_width) + 1) / border_width
if not right_bound:
x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,))
return x
def build_mask(self, data, is_bound, border_width):
_, _, T, H, W = data.shape
t = self.build_1d_mask(T, is_bound[0], is_bound[1], border_width[0])
h = self.build_1d_mask(H, is_bound[2], is_bound[3], border_width[1])
w = self.build_1d_mask(W, is_bound[4], is_bound[5], border_width[2])
t = repeat(t, "T -> T H W", T=T, H=H, W=W)
h = repeat(h, "H -> T H W", T=T, H=H, W=W)
w = repeat(w, "W -> T H W", T=T, H=H, W=W)
mask = torch.stack([t, h, w]).min(dim=0).values
mask = rearrange(mask, "T H W -> 1 1 T H W")
return mask
def tile_forward(self, hidden_states, tile_size, tile_stride):
B, C, T, H, W = hidden_states.shape
size_t, size_h, size_w = tile_size
stride_t, stride_h, stride_w = tile_stride
# Split tasks
tasks = []
for t in range(0, T, stride_t):
if (t-stride_t >= 0 and t-stride_t+size_t >= T): continue
for h in range(0, H, stride_h):
if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue
for w in range(0, W, stride_w):
if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue
t_, h_, w_ = t + size_t, h + size_h, w + size_w
tasks.append((t, t_, h, h_, w, w_))
# Run
torch_dtype = self.post_quant_conv.weight.dtype
data_device = hidden_states.device
computation_device = self.post_quant_conv.weight.device
weight = torch.zeros((1, 1, (T - 1) * 4 + 1, H * 8, W * 8), dtype=torch_dtype, device=data_device)
values = torch.zeros((B, 3, (T - 1) * 4 + 1, H * 8, W * 8), dtype=torch_dtype, device=data_device)
for t, t_, h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"):
hidden_states_batch = hidden_states[:, :, t:t_, h:h_, w:w_].to(computation_device)
hidden_states_batch = self.forward(hidden_states_batch).to(data_device)
if t > 0:
hidden_states_batch = hidden_states_batch[:, :, 1:]
mask = self.build_mask(
hidden_states_batch,
is_bound=(t==0, t_>=T, h==0, h_>=H, w==0, w_>=W),
border_width=((size_t - stride_t) * 4, (size_h - stride_h) * 8, (size_w - stride_w) * 8)
).to(dtype=torch_dtype, device=data_device)
target_t = 0 if t==0 else t * 4 + 1
target_h = h * 8
target_w = w * 8
values[
:,
:,
target_t: target_t + hidden_states_batch.shape[2],
target_h: target_h + hidden_states_batch.shape[3],
target_w: target_w + hidden_states_batch.shape[4],
] += hidden_states_batch * mask
weight[
:,
:,
target_t: target_t + hidden_states_batch.shape[2],
target_h: target_h + hidden_states_batch.shape[3],
target_w: target_w + hidden_states_batch.shape[4],
] += mask
return values / weight
def decode_video(self, latents, tile_size=(17, 32, 32), tile_stride=(12, 24, 24)):
latents = latents.to(self.post_quant_conv.weight.dtype)
return self.tile_forward(latents, tile_size=tile_size, tile_stride=tile_stride)
@staticmethod
def state_dict_converter():
return HunyuanVideoVAEDecoderStateDictConverter()
class HunyuanVideoVAEDecoderStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
state_dict_ = {}
for name in state_dict:
if name.startswith('decoder.') or name.startswith('post_quant_conv.'):
state_dict_[name] = state_dict[name]
return state_dict_