Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
import numpy as np | |
from tqdm import tqdm | |
from einops import repeat | |
class CausalConv3d(nn.Module): | |
def __init__(self, in_channel, out_channel, kernel_size, stride=1, dilation=1, pad_mode='replicate', **kwargs): | |
super().__init__() | |
self.pad_mode = pad_mode | |
self.time_causal_padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size - 1, 0 | |
) # W, H, T | |
self.conv = nn.Conv3d(in_channel, out_channel, kernel_size, stride=stride, dilation=dilation, **kwargs) | |
def forward(self, x): | |
x = F.pad(x, self.time_causal_padding, mode=self.pad_mode) | |
return self.conv(x) | |
class UpsampleCausal3D(nn.Module): | |
def __init__(self, channels, use_conv=False, out_channels=None, kernel_size=None, bias=True, upsample_factor=(2, 2, 2)): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.upsample_factor = upsample_factor | |
self.conv = None | |
if use_conv: | |
kernel_size = 3 if kernel_size is None else kernel_size | |
self.conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, bias=bias) | |
def forward(self, hidden_states): | |
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
dtype = hidden_states.dtype | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(torch.float32) | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
hidden_states = hidden_states.contiguous() | |
# interpolate | |
B, C, T, H, W = hidden_states.shape | |
first_h, other_h = hidden_states.split((1, T - 1), dim=2) | |
if T > 1: | |
other_h = F.interpolate(other_h, scale_factor=self.upsample_factor, mode="nearest") | |
first_h = F.interpolate(first_h.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest").unsqueeze(2) | |
hidden_states = torch.cat((first_h, other_h), dim=2) if T > 1 else first_h | |
# If the input is bfloat16, we cast back to bfloat16 | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(dtype) | |
if self.conv: | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class ResnetBlockCausal3D(nn.Module): | |
def __init__(self, in_channels, out_channels=None, dropout=0.0, groups=32, eps=1e-6, conv_shortcut_bias=True): | |
super().__init__() | |
self.pre_norm = True | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1) | |
self.norm2 = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True) | |
self.conv2 = CausalConv3d(out_channels, out_channels, kernel_size=3, stride=1) | |
self.dropout = nn.Dropout(dropout) | |
self.nonlinearity = nn.SiLU() | |
self.conv_shortcut = None | |
if in_channels != out_channels: | |
self.conv_shortcut = CausalConv3d(in_channels, out_channels, kernel_size=1, stride=1, bias=conv_shortcut_bias) | |
def forward(self, input_tensor): | |
hidden_states = input_tensor | |
# conv1 | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
# conv2 | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
# shortcut | |
if self.conv_shortcut is not None: | |
input_tensor = (self.conv_shortcut(input_tensor)) | |
# shortcut and scale | |
output_tensor = input_tensor + hidden_states | |
return output_tensor | |
def prepare_causal_attention_mask(n_frame, n_hw, dtype, device, batch_size=None): | |
seq_len = n_frame * n_hw | |
mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device) | |
for i in range(seq_len): | |
i_frame = i // n_hw | |
mask[i, :(i_frame + 1) * n_hw] = 0 | |
if batch_size is not None: | |
mask = mask.unsqueeze(0).expand(batch_size, -1, -1) | |
return mask | |
class Attention(nn.Module): | |
def __init__(self, | |
in_channels, | |
num_heads, | |
head_dim, | |
num_groups=32, | |
dropout=0.0, | |
eps=1e-6, | |
bias=True, | |
residual_connection=True): | |
super().__init__() | |
self.num_heads = num_heads | |
self.head_dim = head_dim | |
self.residual_connection = residual_connection | |
dim_inner = head_dim * num_heads | |
self.group_norm = nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True) | |
self.to_q = nn.Linear(in_channels, dim_inner, bias=bias) | |
self.to_k = nn.Linear(in_channels, dim_inner, bias=bias) | |
self.to_v = nn.Linear(in_channels, dim_inner, bias=bias) | |
self.to_out = nn.Sequential(nn.Linear(dim_inner, in_channels, bias=bias), nn.Dropout(dropout)) | |
def forward(self, input_tensor, attn_mask=None): | |
hidden_states = self.group_norm(input_tensor.transpose(1, 2)).transpose(1, 2) | |
batch_size = hidden_states.shape[0] | |
q = self.to_q(hidden_states) | |
k = self.to_k(hidden_states) | |
v = self.to_v(hidden_states) | |
q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
if attn_mask is not None: | |
attn_mask = attn_mask.view(batch_size, self.num_heads, -1, attn_mask.shape[-1]) | |
hidden_states = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) | |
hidden_states = self.to_out(hidden_states) | |
if self.residual_connection: | |
output_tensor = input_tensor + hidden_states | |
return output_tensor | |
class UNetMidBlockCausal3D(nn.Module): | |
def __init__(self, in_channels, dropout=0.0, num_layers=1, eps=1e-6, num_groups=32, attention_head_dim=None): | |
super().__init__() | |
resnets = [ | |
ResnetBlockCausal3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
dropout=dropout, | |
groups=num_groups, | |
eps=eps, | |
) | |
] | |
attentions = [] | |
attention_head_dim = attention_head_dim or in_channels | |
for _ in range(num_layers): | |
attentions.append( | |
Attention( | |
in_channels, | |
num_heads=in_channels // attention_head_dim, | |
head_dim=attention_head_dim, | |
num_groups=num_groups, | |
dropout=dropout, | |
eps=eps, | |
bias=True, | |
residual_connection=True, | |
)) | |
resnets.append( | |
ResnetBlockCausal3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
dropout=dropout, | |
groups=num_groups, | |
eps=eps, | |
)) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
def forward(self, hidden_states): | |
hidden_states = self.resnets[0](hidden_states) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
B, C, T, H, W = hidden_states.shape | |
hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c") | |
attn_mask = prepare_causal_attention_mask(T, H * W, hidden_states.dtype, hidden_states.device, batch_size=B) | |
hidden_states = attn(hidden_states, attn_mask=attn_mask) | |
hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=T, h=H, w=W) | |
hidden_states = resnet(hidden_states) | |
return hidden_states | |
class UpDecoderBlockCausal3D(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
dropout=0.0, | |
num_layers=1, | |
eps=1e-6, | |
num_groups=32, | |
add_upsample=True, | |
upsample_scale_factor=(2, 2, 2), | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
cur_in_channel = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlockCausal3D( | |
in_channels=cur_in_channel, | |
out_channels=out_channels, | |
groups=num_groups, | |
dropout=dropout, | |
eps=eps, | |
)) | |
self.resnets = nn.ModuleList(resnets) | |
self.upsamplers = None | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([ | |
UpsampleCausal3D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
upsample_factor=upsample_scale_factor, | |
) | |
]) | |
def forward(self, hidden_states): | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states) | |
return hidden_states | |
class DecoderCausal3D(nn.Module): | |
def __init__( | |
self, | |
in_channels=16, | |
out_channels=3, | |
eps=1e-6, | |
dropout=0.0, | |
block_out_channels=[128, 256, 512, 512], | |
layers_per_block=2, | |
num_groups=32, | |
time_compression_ratio=4, | |
spatial_compression_ratio=8, | |
gradient_checkpointing=False, | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1) | |
self.up_blocks = nn.ModuleList([]) | |
# mid | |
self.mid_block = UNetMidBlockCausal3D( | |
in_channels=block_out_channels[-1], | |
dropout=dropout, | |
eps=eps, | |
num_groups=num_groups, | |
attention_head_dim=block_out_channels[-1], | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i in range(len(block_out_channels)): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio)) | |
num_time_upsample_layers = int(np.log2(time_compression_ratio)) | |
add_spatial_upsample = bool(i < num_spatial_upsample_layers) | |
add_time_upsample = bool(i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block) | |
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1) | |
upsample_scale_factor_T = (2,) if add_time_upsample else (1,) | |
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW) | |
up_block = UpDecoderBlockCausal3D( | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
dropout=dropout, | |
num_layers=layers_per_block + 1, | |
eps=eps, | |
num_groups=num_groups, | |
add_upsample=bool(add_spatial_upsample or add_time_upsample), | |
upsample_scale_factor=upsample_scale_factor, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups, eps=eps) | |
self.conv_act = nn.SiLU() | |
self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3) | |
self.gradient_checkpointing = gradient_checkpointing | |
def forward(self, hidden_states): | |
hidden_states = self.conv_in(hidden_states) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
# middle | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), | |
hidden_states, | |
use_reentrant=False, | |
) | |
# up | |
for up_block in self.up_blocks: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(up_block), | |
hidden_states, | |
use_reentrant=False, | |
) | |
else: | |
# middle | |
hidden_states = self.mid_block(hidden_states) | |
# up | |
for up_block in self.up_blocks: | |
hidden_states = up_block(hidden_states) | |
# post-process | |
hidden_states = self.conv_norm_out(hidden_states) | |
hidden_states = self.conv_act(hidden_states) | |
hidden_states = self.conv_out(hidden_states) | |
return hidden_states | |
class HunyuanVideoVAEDecoder(nn.Module): | |
def __init__( | |
self, | |
in_channels=16, | |
out_channels=3, | |
eps=1e-6, | |
dropout=0.0, | |
block_out_channels=[128, 256, 512, 512], | |
layers_per_block=2, | |
num_groups=32, | |
time_compression_ratio=4, | |
spatial_compression_ratio=8, | |
gradient_checkpointing=False, | |
): | |
super().__init__() | |
self.decoder = DecoderCausal3D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
eps=eps, | |
dropout=dropout, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
num_groups=num_groups, | |
time_compression_ratio=time_compression_ratio, | |
spatial_compression_ratio=spatial_compression_ratio, | |
gradient_checkpointing=gradient_checkpointing, | |
) | |
self.post_quant_conv = nn.Conv3d(in_channels, in_channels, kernel_size=1) | |
self.scaling_factor = 0.476986 | |
def forward(self, latents): | |
latents = latents / self.scaling_factor | |
latents = self.post_quant_conv(latents) | |
dec = self.decoder(latents) | |
return dec | |
def build_1d_mask(self, length, left_bound, right_bound, border_width): | |
x = torch.ones((length,)) | |
if not left_bound: | |
x[:border_width] = (torch.arange(border_width) + 1) / border_width | |
if not right_bound: | |
x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,)) | |
return x | |
def build_mask(self, data, is_bound, border_width): | |
_, _, T, H, W = data.shape | |
t = self.build_1d_mask(T, is_bound[0], is_bound[1], border_width[0]) | |
h = self.build_1d_mask(H, is_bound[2], is_bound[3], border_width[1]) | |
w = self.build_1d_mask(W, is_bound[4], is_bound[5], border_width[2]) | |
t = repeat(t, "T -> T H W", T=T, H=H, W=W) | |
h = repeat(h, "H -> T H W", T=T, H=H, W=W) | |
w = repeat(w, "W -> T H W", T=T, H=H, W=W) | |
mask = torch.stack([t, h, w]).min(dim=0).values | |
mask = rearrange(mask, "T H W -> 1 1 T H W") | |
return mask | |
def tile_forward(self, hidden_states, tile_size, tile_stride): | |
B, C, T, H, W = hidden_states.shape | |
size_t, size_h, size_w = tile_size | |
stride_t, stride_h, stride_w = tile_stride | |
# Split tasks | |
tasks = [] | |
for t in range(0, T, stride_t): | |
if (t-stride_t >= 0 and t-stride_t+size_t >= T): continue | |
for h in range(0, H, stride_h): | |
if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue | |
for w in range(0, W, stride_w): | |
if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue | |
t_, h_, w_ = t + size_t, h + size_h, w + size_w | |
tasks.append((t, t_, h, h_, w, w_)) | |
# Run | |
torch_dtype = self.post_quant_conv.weight.dtype | |
data_device = hidden_states.device | |
computation_device = self.post_quant_conv.weight.device | |
weight = torch.zeros((1, 1, (T - 1) * 4 + 1, H * 8, W * 8), dtype=torch_dtype, device=data_device) | |
values = torch.zeros((B, 3, (T - 1) * 4 + 1, H * 8, W * 8), dtype=torch_dtype, device=data_device) | |
for t, t_, h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"): | |
hidden_states_batch = hidden_states[:, :, t:t_, h:h_, w:w_].to(computation_device) | |
hidden_states_batch = self.forward(hidden_states_batch).to(data_device) | |
if t > 0: | |
hidden_states_batch = hidden_states_batch[:, :, 1:] | |
mask = self.build_mask( | |
hidden_states_batch, | |
is_bound=(t==0, t_>=T, h==0, h_>=H, w==0, w_>=W), | |
border_width=((size_t - stride_t) * 4, (size_h - stride_h) * 8, (size_w - stride_w) * 8) | |
).to(dtype=torch_dtype, device=data_device) | |
target_t = 0 if t==0 else t * 4 + 1 | |
target_h = h * 8 | |
target_w = w * 8 | |
values[ | |
:, | |
:, | |
target_t: target_t + hidden_states_batch.shape[2], | |
target_h: target_h + hidden_states_batch.shape[3], | |
target_w: target_w + hidden_states_batch.shape[4], | |
] += hidden_states_batch * mask | |
weight[ | |
:, | |
:, | |
target_t: target_t + hidden_states_batch.shape[2], | |
target_h: target_h + hidden_states_batch.shape[3], | |
target_w: target_w + hidden_states_batch.shape[4], | |
] += mask | |
return values / weight | |
def decode_video(self, latents, tile_size=(17, 32, 32), tile_stride=(12, 24, 24)): | |
latents = latents.to(self.post_quant_conv.weight.dtype) | |
return self.tile_forward(latents, tile_size=tile_size, tile_stride=tile_stride) | |
def state_dict_converter(): | |
return HunyuanVideoVAEDecoderStateDictConverter() | |
class HunyuanVideoVAEDecoderStateDictConverter: | |
def __init__(self): | |
pass | |
def from_diffusers(self, state_dict): | |
state_dict_ = {} | |
for name in state_dict: | |
if name.startswith('decoder.') or name.startswith('post_quant_conv.'): | |
state_dict_[name] = state_dict[name] | |
return state_dict_ | |