jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
raw
history blame
18.2 kB
import torch
from .sd_unet import SDUNet
from .sdxl_unet import SDXLUNet
from .sd_text_encoder import SDTextEncoder
from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2
from .sd3_dit import SD3DiT
from .flux_dit import FluxDiT
from .hunyuan_dit import HunyuanDiT
from .cog_dit import CogDiT
from .hunyuan_video_dit import HunyuanVideoDiT
from .wan_video_dit import WanModel
class LoRAFromCivitai:
def __init__(self):
self.supported_model_classes = []
self.lora_prefix = []
self.renamed_lora_prefix = {}
self.special_keys = {}
def convert_state_dict(self, state_dict, lora_prefix="lora_unet_", alpha=1.0):
for key in state_dict:
if ".lora_up" in key:
return self.convert_state_dict_up_down(state_dict, lora_prefix, alpha)
return self.convert_state_dict_AB(state_dict, lora_prefix, alpha)
def convert_state_dict_up_down(self, state_dict, lora_prefix="lora_unet_", alpha=1.0):
renamed_lora_prefix = self.renamed_lora_prefix.get(lora_prefix, "")
state_dict_ = {}
for key in state_dict:
if ".lora_up" not in key:
continue
if not key.startswith(lora_prefix):
continue
weight_up = state_dict[key].to(device="cuda", dtype=torch.float16)
weight_down = state_dict[key.replace(".lora_up", ".lora_down")].to(device="cuda", dtype=torch.float16)
if len(weight_up.shape) == 4:
weight_up = weight_up.squeeze(3).squeeze(2).to(torch.float32)
weight_down = weight_down.squeeze(3).squeeze(2).to(torch.float32)
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
lora_weight = alpha * torch.mm(weight_up, weight_down)
target_name = key.split(".")[0].replace(lora_prefix, renamed_lora_prefix).replace("_", ".") + ".weight"
for special_key in self.special_keys:
target_name = target_name.replace(special_key, self.special_keys[special_key])
state_dict_[target_name] = lora_weight.cpu()
return state_dict_
def convert_state_dict_AB(self, state_dict, lora_prefix="", alpha=1.0, device="cuda", torch_dtype=torch.float16):
state_dict_ = {}
for key in state_dict:
if ".lora_B." not in key:
continue
if not key.startswith(lora_prefix):
continue
weight_up = state_dict[key].to(device=device, dtype=torch_dtype)
weight_down = state_dict[key.replace(".lora_B.", ".lora_A.")].to(device=device, dtype=torch_dtype)
if len(weight_up.shape) == 4:
weight_up = weight_up.squeeze(3).squeeze(2)
weight_down = weight_down.squeeze(3).squeeze(2)
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
lora_weight = alpha * torch.mm(weight_up, weight_down)
keys = key.split(".")
keys.pop(keys.index("lora_B"))
target_name = ".".join(keys)
target_name = target_name[len(lora_prefix):]
state_dict_[target_name] = lora_weight.cpu()
return state_dict_
def load(self, model, state_dict_lora, lora_prefix, alpha=1.0, model_resource=None):
state_dict_model = model.state_dict()
state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=alpha)
if model_resource == "diffusers":
state_dict_lora = model.__class__.state_dict_converter().from_diffusers(state_dict_lora)
elif model_resource == "civitai":
state_dict_lora = model.__class__.state_dict_converter().from_civitai(state_dict_lora)
if isinstance(state_dict_lora, tuple):
state_dict_lora = state_dict_lora[0]
if len(state_dict_lora) > 0:
print(f" {len(state_dict_lora)} tensors are updated.")
for name in state_dict_lora:
fp8=False
if state_dict_model[name].dtype == torch.float8_e4m3fn:
state_dict_model[name]= state_dict_model[name].to(state_dict_lora[name].dtype)
fp8=True
state_dict_model[name] += state_dict_lora[name].to(
dtype=state_dict_model[name].dtype, device=state_dict_model[name].device)
if fp8:
state_dict_model[name] = state_dict_model[name].to(torch.float8_e4m3fn)
model.load_state_dict(state_dict_model)
def match(self, model, state_dict_lora):
for lora_prefix, model_class in zip(self.lora_prefix, self.supported_model_classes):
if not isinstance(model, model_class):
continue
state_dict_model = model.state_dict()
for model_resource in ["diffusers", "civitai"]:
try:
state_dict_lora_ = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=1.0)
converter_fn = model.__class__.state_dict_converter().from_diffusers if model_resource == "diffusers" \
else model.__class__.state_dict_converter().from_civitai
state_dict_lora_ = converter_fn(state_dict_lora_)
if isinstance(state_dict_lora_, tuple):
state_dict_lora_ = state_dict_lora_[0]
if len(state_dict_lora_) == 0:
continue
for name in state_dict_lora_:
if name not in state_dict_model:
break
else:
return lora_prefix, model_resource
except:
pass
return None
class SDLoRAFromCivitai(LoRAFromCivitai):
def __init__(self):
super().__init__()
self.supported_model_classes = [SDUNet, SDTextEncoder]
self.lora_prefix = ["lora_unet_", "lora_te_"]
self.special_keys = {
"down.blocks": "down_blocks",
"up.blocks": "up_blocks",
"mid.block": "mid_block",
"proj.in": "proj_in",
"proj.out": "proj_out",
"transformer.blocks": "transformer_blocks",
"to.q": "to_q",
"to.k": "to_k",
"to.v": "to_v",
"to.out": "to_out",
"text.model": "text_model",
"self.attn.q.proj": "self_attn.q_proj",
"self.attn.k.proj": "self_attn.k_proj",
"self.attn.v.proj": "self_attn.v_proj",
"self.attn.out.proj": "self_attn.out_proj",
"input.blocks": "model.diffusion_model.input_blocks",
"middle.block": "model.diffusion_model.middle_block",
"output.blocks": "model.diffusion_model.output_blocks",
}
class SDXLLoRAFromCivitai(LoRAFromCivitai):
def __init__(self):
super().__init__()
self.supported_model_classes = [SDXLUNet, SDXLTextEncoder, SDXLTextEncoder2]
self.lora_prefix = ["lora_unet_", "lora_te1_", "lora_te2_"]
self.renamed_lora_prefix = {"lora_te2_": "2"}
self.special_keys = {
"down.blocks": "down_blocks",
"up.blocks": "up_blocks",
"mid.block": "mid_block",
"proj.in": "proj_in",
"proj.out": "proj_out",
"transformer.blocks": "transformer_blocks",
"to.q": "to_q",
"to.k": "to_k",
"to.v": "to_v",
"to.out": "to_out",
"text.model": "conditioner.embedders.0.transformer.text_model",
"self.attn.q.proj": "self_attn.q_proj",
"self.attn.k.proj": "self_attn.k_proj",
"self.attn.v.proj": "self_attn.v_proj",
"self.attn.out.proj": "self_attn.out_proj",
"input.blocks": "model.diffusion_model.input_blocks",
"middle.block": "model.diffusion_model.middle_block",
"output.blocks": "model.diffusion_model.output_blocks",
"2conditioner.embedders.0.transformer.text_model.encoder.layers": "text_model.encoder.layers"
}
class FluxLoRAFromCivitai(LoRAFromCivitai):
def __init__(self):
super().__init__()
self.supported_model_classes = [FluxDiT, FluxDiT]
self.lora_prefix = ["lora_unet_", "transformer."]
self.renamed_lora_prefix = {}
self.special_keys = {
"single.blocks": "single_blocks",
"double.blocks": "double_blocks",
"img.attn": "img_attn",
"img.mlp": "img_mlp",
"img.mod": "img_mod",
"txt.attn": "txt_attn",
"txt.mlp": "txt_mlp",
"txt.mod": "txt_mod",
}
class GeneralLoRAFromPeft:
def __init__(self):
self.supported_model_classes = [SDUNet, SDXLUNet, SD3DiT, HunyuanDiT, FluxDiT, CogDiT, WanModel]
def get_name_dict(self, lora_state_dict):
lora_name_dict = {}
for key in lora_state_dict:
if ".lora_B." not in key:
continue
keys = key.split(".")
if len(keys) > keys.index("lora_B") + 2:
keys.pop(keys.index("lora_B") + 1)
keys.pop(keys.index("lora_B"))
if keys[0] == "diffusion_model":
keys.pop(0)
target_name = ".".join(keys)
lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A."))
return lora_name_dict
def match(self, model: torch.nn.Module, state_dict_lora):
lora_name_dict = self.get_name_dict(state_dict_lora)
model_name_dict = {name: None for name, _ in model.named_parameters()}
matched_num = sum([i in model_name_dict for i in lora_name_dict])
if matched_num == len(lora_name_dict):
return "", ""
else:
return None
def fetch_device_and_dtype(self, state_dict):
device, dtype = None, None
for name, param in state_dict.items():
device, dtype = param.device, param.dtype
break
computation_device = device
computation_dtype = dtype
if computation_device == torch.device("cpu"):
if torch.cuda.is_available():
computation_device = torch.device("cuda")
if computation_dtype == torch.float8_e4m3fn:
computation_dtype = torch.float32
return device, dtype, computation_device, computation_dtype
def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""):
state_dict_model = model.state_dict()
device, dtype, computation_device, computation_dtype = self.fetch_device_and_dtype(state_dict_model)
lora_name_dict = self.get_name_dict(state_dict_lora)
for name in lora_name_dict:
weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=computation_device, dtype=computation_dtype)
weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=computation_device, dtype=computation_dtype)
if len(weight_up.shape) == 4:
weight_up = weight_up.squeeze(3).squeeze(2)
weight_down = weight_down.squeeze(3).squeeze(2)
weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
weight_lora = alpha * torch.mm(weight_up, weight_down)
weight_model = state_dict_model[name].to(device=computation_device, dtype=computation_dtype)
weight_patched = weight_model + weight_lora
state_dict_model[name] = weight_patched.to(device=device, dtype=dtype)
print(f" {len(lora_name_dict)} tensors are updated.")
model.load_state_dict(state_dict_model)
class HunyuanVideoLoRAFromCivitai(LoRAFromCivitai):
def __init__(self):
super().__init__()
self.supported_model_classes = [HunyuanVideoDiT, HunyuanVideoDiT]
self.lora_prefix = ["diffusion_model.", "transformer."]
self.special_keys = {}
class FluxLoRAConverter:
def __init__(self):
pass
@staticmethod
def align_to_opensource_format(state_dict, alpha=1.0):
prefix_rename_dict = {
"single_blocks": "lora_unet_single_blocks",
"blocks": "lora_unet_double_blocks",
}
middle_rename_dict = {
"norm.linear": "modulation_lin",
"to_qkv_mlp": "linear1",
"proj_out": "linear2",
"norm1_a.linear": "img_mod_lin",
"norm1_b.linear": "txt_mod_lin",
"attn.a_to_qkv": "img_attn_qkv",
"attn.b_to_qkv": "txt_attn_qkv",
"attn.a_to_out": "img_attn_proj",
"attn.b_to_out": "txt_attn_proj",
"ff_a.0": "img_mlp_0",
"ff_a.2": "img_mlp_2",
"ff_b.0": "txt_mlp_0",
"ff_b.2": "txt_mlp_2",
}
suffix_rename_dict = {
"lora_B.weight": "lora_up.weight",
"lora_A.weight": "lora_down.weight",
}
state_dict_ = {}
for name, param in state_dict.items():
names = name.split(".")
if names[-2] != "lora_A" and names[-2] != "lora_B":
names.pop(-2)
prefix = names[0]
middle = ".".join(names[2:-2])
suffix = ".".join(names[-2:])
block_id = names[1]
if middle not in middle_rename_dict:
continue
rename = prefix_rename_dict[prefix] + "_" + block_id + "_" + middle_rename_dict[middle] + "." + suffix_rename_dict[suffix]
state_dict_[rename] = param
if rename.endswith("lora_up.weight"):
state_dict_[rename.replace("lora_up.weight", "alpha")] = torch.tensor((alpha,))[0]
return state_dict_
@staticmethod
def align_to_diffsynth_format(state_dict):
rename_dict = {
"lora_unet_double_blocks_blockid_img_mod_lin.lora_down.weight": "blocks.blockid.norm1_a.linear.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_mod_lin.lora_up.weight": "blocks.blockid.norm1_a.linear.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_mod_lin.lora_down.weight": "blocks.blockid.norm1_b.linear.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_mod_lin.lora_up.weight": "blocks.blockid.norm1_b.linear.lora_B.default.weight",
"lora_unet_double_blocks_blockid_img_attn_qkv.lora_down.weight": "blocks.blockid.attn.a_to_qkv.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_attn_qkv.lora_up.weight": "blocks.blockid.attn.a_to_qkv.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_attn_qkv.lora_down.weight": "blocks.blockid.attn.b_to_qkv.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_attn_qkv.lora_up.weight": "blocks.blockid.attn.b_to_qkv.lora_B.default.weight",
"lora_unet_double_blocks_blockid_img_attn_proj.lora_down.weight": "blocks.blockid.attn.a_to_out.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_attn_proj.lora_up.weight": "blocks.blockid.attn.a_to_out.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_attn_proj.lora_down.weight": "blocks.blockid.attn.b_to_out.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_attn_proj.lora_up.weight": "blocks.blockid.attn.b_to_out.lora_B.default.weight",
"lora_unet_double_blocks_blockid_img_mlp_0.lora_down.weight": "blocks.blockid.ff_a.0.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_mlp_0.lora_up.weight": "blocks.blockid.ff_a.0.lora_B.default.weight",
"lora_unet_double_blocks_blockid_img_mlp_2.lora_down.weight": "blocks.blockid.ff_a.2.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_mlp_2.lora_up.weight": "blocks.blockid.ff_a.2.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_mlp_0.lora_down.weight": "blocks.blockid.ff_b.0.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_mlp_0.lora_up.weight": "blocks.blockid.ff_b.0.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_mlp_2.lora_down.weight": "blocks.blockid.ff_b.2.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_mlp_2.lora_up.weight": "blocks.blockid.ff_b.2.lora_B.default.weight",
"lora_unet_single_blocks_blockid_modulation_lin.lora_down.weight": "single_blocks.blockid.norm.linear.lora_A.default.weight",
"lora_unet_single_blocks_blockid_modulation_lin.lora_up.weight": "single_blocks.blockid.norm.linear.lora_B.default.weight",
"lora_unet_single_blocks_blockid_linear1.lora_down.weight": "single_blocks.blockid.to_qkv_mlp.lora_A.default.weight",
"lora_unet_single_blocks_blockid_linear1.lora_up.weight": "single_blocks.blockid.to_qkv_mlp.lora_B.default.weight",
"lora_unet_single_blocks_blockid_linear2.lora_down.weight": "single_blocks.blockid.proj_out.lora_A.default.weight",
"lora_unet_single_blocks_blockid_linear2.lora_up.weight": "single_blocks.blockid.proj_out.lora_B.default.weight",
}
def guess_block_id(name):
names = name.split("_")
for i in names:
if i.isdigit():
return i, name.replace(f"_{i}_", "_blockid_")
return None, None
state_dict_ = {}
for name, param in state_dict.items():
block_id, source_name = guess_block_id(name)
if source_name in rename_dict:
target_name = rename_dict[source_name]
target_name = target_name.replace(".blockid.", f".{block_id}.")
state_dict_[target_name] = param
else:
state_dict_[name] = param
return state_dict_
def get_lora_loaders():
return [SDLoRAFromCivitai(), SDXLLoRAFromCivitai(), FluxLoRAFromCivitai(), HunyuanVideoLoRAFromCivitai(), GeneralLoRAFromPeft()]