Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
from .sd_unet import SDUNet | |
from .sdxl_unet import SDXLUNet | |
from .sd_text_encoder import SDTextEncoder | |
from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2 | |
from .sd3_dit import SD3DiT | |
from .flux_dit import FluxDiT | |
from .hunyuan_dit import HunyuanDiT | |
from .cog_dit import CogDiT | |
from .hunyuan_video_dit import HunyuanVideoDiT | |
from .wan_video_dit import WanModel | |
class LoRAFromCivitai: | |
def __init__(self): | |
self.supported_model_classes = [] | |
self.lora_prefix = [] | |
self.renamed_lora_prefix = {} | |
self.special_keys = {} | |
def convert_state_dict(self, state_dict, lora_prefix="lora_unet_", alpha=1.0): | |
for key in state_dict: | |
if ".lora_up" in key: | |
return self.convert_state_dict_up_down(state_dict, lora_prefix, alpha) | |
return self.convert_state_dict_AB(state_dict, lora_prefix, alpha) | |
def convert_state_dict_up_down(self, state_dict, lora_prefix="lora_unet_", alpha=1.0): | |
renamed_lora_prefix = self.renamed_lora_prefix.get(lora_prefix, "") | |
state_dict_ = {} | |
for key in state_dict: | |
if ".lora_up" not in key: | |
continue | |
if not key.startswith(lora_prefix): | |
continue | |
weight_up = state_dict[key].to(device="cuda", dtype=torch.float16) | |
weight_down = state_dict[key.replace(".lora_up", ".lora_down")].to(device="cuda", dtype=torch.float16) | |
if len(weight_up.shape) == 4: | |
weight_up = weight_up.squeeze(3).squeeze(2).to(torch.float32) | |
weight_down = weight_down.squeeze(3).squeeze(2).to(torch.float32) | |
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) | |
else: | |
lora_weight = alpha * torch.mm(weight_up, weight_down) | |
target_name = key.split(".")[0].replace(lora_prefix, renamed_lora_prefix).replace("_", ".") + ".weight" | |
for special_key in self.special_keys: | |
target_name = target_name.replace(special_key, self.special_keys[special_key]) | |
state_dict_[target_name] = lora_weight.cpu() | |
return state_dict_ | |
def convert_state_dict_AB(self, state_dict, lora_prefix="", alpha=1.0, device="cuda", torch_dtype=torch.float16): | |
state_dict_ = {} | |
for key in state_dict: | |
if ".lora_B." not in key: | |
continue | |
if not key.startswith(lora_prefix): | |
continue | |
weight_up = state_dict[key].to(device=device, dtype=torch_dtype) | |
weight_down = state_dict[key.replace(".lora_B.", ".lora_A.")].to(device=device, dtype=torch_dtype) | |
if len(weight_up.shape) == 4: | |
weight_up = weight_up.squeeze(3).squeeze(2) | |
weight_down = weight_down.squeeze(3).squeeze(2) | |
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) | |
else: | |
lora_weight = alpha * torch.mm(weight_up, weight_down) | |
keys = key.split(".") | |
keys.pop(keys.index("lora_B")) | |
target_name = ".".join(keys) | |
target_name = target_name[len(lora_prefix):] | |
state_dict_[target_name] = lora_weight.cpu() | |
return state_dict_ | |
def load(self, model, state_dict_lora, lora_prefix, alpha=1.0, model_resource=None): | |
state_dict_model = model.state_dict() | |
state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=alpha) | |
if model_resource == "diffusers": | |
state_dict_lora = model.__class__.state_dict_converter().from_diffusers(state_dict_lora) | |
elif model_resource == "civitai": | |
state_dict_lora = model.__class__.state_dict_converter().from_civitai(state_dict_lora) | |
if isinstance(state_dict_lora, tuple): | |
state_dict_lora = state_dict_lora[0] | |
if len(state_dict_lora) > 0: | |
print(f" {len(state_dict_lora)} tensors are updated.") | |
for name in state_dict_lora: | |
fp8=False | |
if state_dict_model[name].dtype == torch.float8_e4m3fn: | |
state_dict_model[name]= state_dict_model[name].to(state_dict_lora[name].dtype) | |
fp8=True | |
state_dict_model[name] += state_dict_lora[name].to( | |
dtype=state_dict_model[name].dtype, device=state_dict_model[name].device) | |
if fp8: | |
state_dict_model[name] = state_dict_model[name].to(torch.float8_e4m3fn) | |
model.load_state_dict(state_dict_model) | |
def match(self, model, state_dict_lora): | |
for lora_prefix, model_class in zip(self.lora_prefix, self.supported_model_classes): | |
if not isinstance(model, model_class): | |
continue | |
state_dict_model = model.state_dict() | |
for model_resource in ["diffusers", "civitai"]: | |
try: | |
state_dict_lora_ = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=1.0) | |
converter_fn = model.__class__.state_dict_converter().from_diffusers if model_resource == "diffusers" \ | |
else model.__class__.state_dict_converter().from_civitai | |
state_dict_lora_ = converter_fn(state_dict_lora_) | |
if isinstance(state_dict_lora_, tuple): | |
state_dict_lora_ = state_dict_lora_[0] | |
if len(state_dict_lora_) == 0: | |
continue | |
for name in state_dict_lora_: | |
if name not in state_dict_model: | |
break | |
else: | |
return lora_prefix, model_resource | |
except: | |
pass | |
return None | |
class SDLoRAFromCivitai(LoRAFromCivitai): | |
def __init__(self): | |
super().__init__() | |
self.supported_model_classes = [SDUNet, SDTextEncoder] | |
self.lora_prefix = ["lora_unet_", "lora_te_"] | |
self.special_keys = { | |
"down.blocks": "down_blocks", | |
"up.blocks": "up_blocks", | |
"mid.block": "mid_block", | |
"proj.in": "proj_in", | |
"proj.out": "proj_out", | |
"transformer.blocks": "transformer_blocks", | |
"to.q": "to_q", | |
"to.k": "to_k", | |
"to.v": "to_v", | |
"to.out": "to_out", | |
"text.model": "text_model", | |
"self.attn.q.proj": "self_attn.q_proj", | |
"self.attn.k.proj": "self_attn.k_proj", | |
"self.attn.v.proj": "self_attn.v_proj", | |
"self.attn.out.proj": "self_attn.out_proj", | |
"input.blocks": "model.diffusion_model.input_blocks", | |
"middle.block": "model.diffusion_model.middle_block", | |
"output.blocks": "model.diffusion_model.output_blocks", | |
} | |
class SDXLLoRAFromCivitai(LoRAFromCivitai): | |
def __init__(self): | |
super().__init__() | |
self.supported_model_classes = [SDXLUNet, SDXLTextEncoder, SDXLTextEncoder2] | |
self.lora_prefix = ["lora_unet_", "lora_te1_", "lora_te2_"] | |
self.renamed_lora_prefix = {"lora_te2_": "2"} | |
self.special_keys = { | |
"down.blocks": "down_blocks", | |
"up.blocks": "up_blocks", | |
"mid.block": "mid_block", | |
"proj.in": "proj_in", | |
"proj.out": "proj_out", | |
"transformer.blocks": "transformer_blocks", | |
"to.q": "to_q", | |
"to.k": "to_k", | |
"to.v": "to_v", | |
"to.out": "to_out", | |
"text.model": "conditioner.embedders.0.transformer.text_model", | |
"self.attn.q.proj": "self_attn.q_proj", | |
"self.attn.k.proj": "self_attn.k_proj", | |
"self.attn.v.proj": "self_attn.v_proj", | |
"self.attn.out.proj": "self_attn.out_proj", | |
"input.blocks": "model.diffusion_model.input_blocks", | |
"middle.block": "model.diffusion_model.middle_block", | |
"output.blocks": "model.diffusion_model.output_blocks", | |
"2conditioner.embedders.0.transformer.text_model.encoder.layers": "text_model.encoder.layers" | |
} | |
class FluxLoRAFromCivitai(LoRAFromCivitai): | |
def __init__(self): | |
super().__init__() | |
self.supported_model_classes = [FluxDiT, FluxDiT] | |
self.lora_prefix = ["lora_unet_", "transformer."] | |
self.renamed_lora_prefix = {} | |
self.special_keys = { | |
"single.blocks": "single_blocks", | |
"double.blocks": "double_blocks", | |
"img.attn": "img_attn", | |
"img.mlp": "img_mlp", | |
"img.mod": "img_mod", | |
"txt.attn": "txt_attn", | |
"txt.mlp": "txt_mlp", | |
"txt.mod": "txt_mod", | |
} | |
class GeneralLoRAFromPeft: | |
def __init__(self): | |
self.supported_model_classes = [SDUNet, SDXLUNet, SD3DiT, HunyuanDiT, FluxDiT, CogDiT, WanModel] | |
def get_name_dict(self, lora_state_dict): | |
lora_name_dict = {} | |
for key in lora_state_dict: | |
if ".lora_B." not in key: | |
continue | |
keys = key.split(".") | |
if len(keys) > keys.index("lora_B") + 2: | |
keys.pop(keys.index("lora_B") + 1) | |
keys.pop(keys.index("lora_B")) | |
if keys[0] == "diffusion_model": | |
keys.pop(0) | |
target_name = ".".join(keys) | |
lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A.")) | |
return lora_name_dict | |
def match(self, model: torch.nn.Module, state_dict_lora): | |
lora_name_dict = self.get_name_dict(state_dict_lora) | |
model_name_dict = {name: None for name, _ in model.named_parameters()} | |
matched_num = sum([i in model_name_dict for i in lora_name_dict]) | |
if matched_num == len(lora_name_dict): | |
return "", "" | |
else: | |
return None | |
def fetch_device_and_dtype(self, state_dict): | |
device, dtype = None, None | |
for name, param in state_dict.items(): | |
device, dtype = param.device, param.dtype | |
break | |
computation_device = device | |
computation_dtype = dtype | |
if computation_device == torch.device("cpu"): | |
if torch.cuda.is_available(): | |
computation_device = torch.device("cuda") | |
if computation_dtype == torch.float8_e4m3fn: | |
computation_dtype = torch.float32 | |
return device, dtype, computation_device, computation_dtype | |
def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""): | |
state_dict_model = model.state_dict() | |
device, dtype, computation_device, computation_dtype = self.fetch_device_and_dtype(state_dict_model) | |
lora_name_dict = self.get_name_dict(state_dict_lora) | |
for name in lora_name_dict: | |
weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=computation_device, dtype=computation_dtype) | |
weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=computation_device, dtype=computation_dtype) | |
if len(weight_up.shape) == 4: | |
weight_up = weight_up.squeeze(3).squeeze(2) | |
weight_down = weight_down.squeeze(3).squeeze(2) | |
weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) | |
else: | |
weight_lora = alpha * torch.mm(weight_up, weight_down) | |
weight_model = state_dict_model[name].to(device=computation_device, dtype=computation_dtype) | |
weight_patched = weight_model + weight_lora | |
state_dict_model[name] = weight_patched.to(device=device, dtype=dtype) | |
print(f" {len(lora_name_dict)} tensors are updated.") | |
model.load_state_dict(state_dict_model) | |
class HunyuanVideoLoRAFromCivitai(LoRAFromCivitai): | |
def __init__(self): | |
super().__init__() | |
self.supported_model_classes = [HunyuanVideoDiT, HunyuanVideoDiT] | |
self.lora_prefix = ["diffusion_model.", "transformer."] | |
self.special_keys = {} | |
class FluxLoRAConverter: | |
def __init__(self): | |
pass | |
def align_to_opensource_format(state_dict, alpha=1.0): | |
prefix_rename_dict = { | |
"single_blocks": "lora_unet_single_blocks", | |
"blocks": "lora_unet_double_blocks", | |
} | |
middle_rename_dict = { | |
"norm.linear": "modulation_lin", | |
"to_qkv_mlp": "linear1", | |
"proj_out": "linear2", | |
"norm1_a.linear": "img_mod_lin", | |
"norm1_b.linear": "txt_mod_lin", | |
"attn.a_to_qkv": "img_attn_qkv", | |
"attn.b_to_qkv": "txt_attn_qkv", | |
"attn.a_to_out": "img_attn_proj", | |
"attn.b_to_out": "txt_attn_proj", | |
"ff_a.0": "img_mlp_0", | |
"ff_a.2": "img_mlp_2", | |
"ff_b.0": "txt_mlp_0", | |
"ff_b.2": "txt_mlp_2", | |
} | |
suffix_rename_dict = { | |
"lora_B.weight": "lora_up.weight", | |
"lora_A.weight": "lora_down.weight", | |
} | |
state_dict_ = {} | |
for name, param in state_dict.items(): | |
names = name.split(".") | |
if names[-2] != "lora_A" and names[-2] != "lora_B": | |
names.pop(-2) | |
prefix = names[0] | |
middle = ".".join(names[2:-2]) | |
suffix = ".".join(names[-2:]) | |
block_id = names[1] | |
if middle not in middle_rename_dict: | |
continue | |
rename = prefix_rename_dict[prefix] + "_" + block_id + "_" + middle_rename_dict[middle] + "." + suffix_rename_dict[suffix] | |
state_dict_[rename] = param | |
if rename.endswith("lora_up.weight"): | |
state_dict_[rename.replace("lora_up.weight", "alpha")] = torch.tensor((alpha,))[0] | |
return state_dict_ | |
def align_to_diffsynth_format(state_dict): | |
rename_dict = { | |
"lora_unet_double_blocks_blockid_img_mod_lin.lora_down.weight": "blocks.blockid.norm1_a.linear.lora_A.default.weight", | |
"lora_unet_double_blocks_blockid_img_mod_lin.lora_up.weight": "blocks.blockid.norm1_a.linear.lora_B.default.weight", | |
"lora_unet_double_blocks_blockid_txt_mod_lin.lora_down.weight": "blocks.blockid.norm1_b.linear.lora_A.default.weight", | |
"lora_unet_double_blocks_blockid_txt_mod_lin.lora_up.weight": "blocks.blockid.norm1_b.linear.lora_B.default.weight", | |
"lora_unet_double_blocks_blockid_img_attn_qkv.lora_down.weight": "blocks.blockid.attn.a_to_qkv.lora_A.default.weight", | |
"lora_unet_double_blocks_blockid_img_attn_qkv.lora_up.weight": "blocks.blockid.attn.a_to_qkv.lora_B.default.weight", | |
"lora_unet_double_blocks_blockid_txt_attn_qkv.lora_down.weight": "blocks.blockid.attn.b_to_qkv.lora_A.default.weight", | |
"lora_unet_double_blocks_blockid_txt_attn_qkv.lora_up.weight": "blocks.blockid.attn.b_to_qkv.lora_B.default.weight", | |
"lora_unet_double_blocks_blockid_img_attn_proj.lora_down.weight": "blocks.blockid.attn.a_to_out.lora_A.default.weight", | |
"lora_unet_double_blocks_blockid_img_attn_proj.lora_up.weight": "blocks.blockid.attn.a_to_out.lora_B.default.weight", | |
"lora_unet_double_blocks_blockid_txt_attn_proj.lora_down.weight": "blocks.blockid.attn.b_to_out.lora_A.default.weight", | |
"lora_unet_double_blocks_blockid_txt_attn_proj.lora_up.weight": "blocks.blockid.attn.b_to_out.lora_B.default.weight", | |
"lora_unet_double_blocks_blockid_img_mlp_0.lora_down.weight": "blocks.blockid.ff_a.0.lora_A.default.weight", | |
"lora_unet_double_blocks_blockid_img_mlp_0.lora_up.weight": "blocks.blockid.ff_a.0.lora_B.default.weight", | |
"lora_unet_double_blocks_blockid_img_mlp_2.lora_down.weight": "blocks.blockid.ff_a.2.lora_A.default.weight", | |
"lora_unet_double_blocks_blockid_img_mlp_2.lora_up.weight": "blocks.blockid.ff_a.2.lora_B.default.weight", | |
"lora_unet_double_blocks_blockid_txt_mlp_0.lora_down.weight": "blocks.blockid.ff_b.0.lora_A.default.weight", | |
"lora_unet_double_blocks_blockid_txt_mlp_0.lora_up.weight": "blocks.blockid.ff_b.0.lora_B.default.weight", | |
"lora_unet_double_blocks_blockid_txt_mlp_2.lora_down.weight": "blocks.blockid.ff_b.2.lora_A.default.weight", | |
"lora_unet_double_blocks_blockid_txt_mlp_2.lora_up.weight": "blocks.blockid.ff_b.2.lora_B.default.weight", | |
"lora_unet_single_blocks_blockid_modulation_lin.lora_down.weight": "single_blocks.blockid.norm.linear.lora_A.default.weight", | |
"lora_unet_single_blocks_blockid_modulation_lin.lora_up.weight": "single_blocks.blockid.norm.linear.lora_B.default.weight", | |
"lora_unet_single_blocks_blockid_linear1.lora_down.weight": "single_blocks.blockid.to_qkv_mlp.lora_A.default.weight", | |
"lora_unet_single_blocks_blockid_linear1.lora_up.weight": "single_blocks.blockid.to_qkv_mlp.lora_B.default.weight", | |
"lora_unet_single_blocks_blockid_linear2.lora_down.weight": "single_blocks.blockid.proj_out.lora_A.default.weight", | |
"lora_unet_single_blocks_blockid_linear2.lora_up.weight": "single_blocks.blockid.proj_out.lora_B.default.weight", | |
} | |
def guess_block_id(name): | |
names = name.split("_") | |
for i in names: | |
if i.isdigit(): | |
return i, name.replace(f"_{i}_", "_blockid_") | |
return None, None | |
state_dict_ = {} | |
for name, param in state_dict.items(): | |
block_id, source_name = guess_block_id(name) | |
if source_name in rename_dict: | |
target_name = rename_dict[source_name] | |
target_name = target_name.replace(".blockid.", f".{block_id}.") | |
state_dict_[target_name] = param | |
else: | |
state_dict_[name] = param | |
return state_dict_ | |
def get_lora_loaders(): | |
return [SDLoRAFromCivitai(), SDXLLoRAFromCivitai(), FluxLoRAFromCivitai(), HunyuanVideoLoRAFromCivitai(), GeneralLoRAFromPeft()] | |