ReCamMaster / diffsynth /models /stepvideo_dit.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
raw
history blame
33.7 kB
# Copyright 2025 StepFun Inc. All Rights Reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# ==============================================================================
from typing import Dict, Optional, Tuple, Union, List
import torch, math
from torch import nn
from einops import rearrange, repeat
from tqdm import tqdm
class RMSNorm(nn.Module):
def __init__(
self,
dim: int,
elementwise_affine=True,
eps: float = 1e-6,
device=None,
dtype=None,
):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.eps = eps
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs))
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
output = self._norm(x.float()).type_as(x)
if hasattr(self, "weight"):
output = output * self.weight
return output
ACTIVATION_FUNCTIONS = {
"swish": nn.SiLU(),
"silu": nn.SiLU(),
"mish": nn.Mish(),
"gelu": nn.GELU(),
"relu": nn.ReLU(),
}
def get_activation(act_fn: str) -> nn.Module:
"""Helper function to get activation function from string.
Args:
act_fn (str): Name of activation function.
Returns:
nn.Module: Activation function.
"""
act_fn = act_fn.lower()
if act_fn in ACTIVATION_FUNCTIONS:
return ACTIVATION_FUNCTIONS[act_fn]
else:
raise ValueError(f"Unsupported activation function: {act_fn}")
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
)
return t_emb
class TimestepEmbedding(nn.Module):
def __init__(
self,
in_channels: int,
time_embed_dim: int,
act_fn: str = "silu",
out_dim: int = None,
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
sample_proj_bias=True
):
super().__init__()
linear_cls = nn.Linear
self.linear_1 = linear_cls(
in_channels,
time_embed_dim,
bias=sample_proj_bias,
)
if cond_proj_dim is not None:
self.cond_proj = linear_cls(
cond_proj_dim,
in_channels,
bias=False,
)
else:
self.cond_proj = None
self.act = get_activation(act_fn)
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = linear_cls(
time_embed_dim,
time_embed_dim_out,
bias=sample_proj_bias,
)
if post_act_fn is None:
self.post_act = None
else:
self.post_act = get_activation(post_act_fn)
def forward(self, sample, condition=None):
if condition is not None:
sample = sample + self.cond_proj(condition)
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
if self.post_act is not None:
sample = self.post_act(sample)
return sample
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
super().__init__()
self.outdim = size_emb_dim
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.use_additional_conditions = use_additional_conditions
if self.use_additional_conditions:
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
self.nframe_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.fps_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
def forward(self, timestep, resolution=None, nframe=None, fps=None):
hidden_dtype = timestep.dtype
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
if self.use_additional_conditions:
batch_size = timestep.shape[0]
resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
nframe_emb = self.additional_condition_proj(nframe.flatten()).to(hidden_dtype)
nframe_emb = self.nframe_embedder(nframe_emb).reshape(batch_size, -1)
conditioning = timesteps_emb + resolution_emb + nframe_emb
if fps is not None:
fps_emb = self.additional_condition_proj(fps.flatten()).to(hidden_dtype)
fps_emb = self.fps_embedder(fps_emb).reshape(batch_size, -1)
conditioning = conditioning + fps_emb
else:
conditioning = timesteps_emb
return conditioning
class AdaLayerNormSingle(nn.Module):
r"""
Norm layer adaptive layer norm single (adaLN-single).
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
Parameters:
embedding_dim (`int`): The size of each embedding vector.
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
"""
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, time_step_rescale=1000):
super().__init__()
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
embedding_dim, size_emb_dim=embedding_dim // 2, use_additional_conditions=use_additional_conditions
)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
self.time_step_rescale = time_step_rescale ## timestep usually in [0, 1], we rescale it to [0,1000] for stability
def forward(
self,
timestep: torch.Tensor,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
embedded_timestep = self.emb(timestep*self.time_step_rescale, **added_cond_kwargs)
out = self.linear(self.silu(embedded_timestep))
return out, embedded_timestep
class PixArtAlphaTextProjection(nn.Module):
"""
Projects caption embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size):
super().__init__()
self.linear_1 = nn.Linear(
in_features,
hidden_size,
bias=True,
)
self.act_1 = nn.GELU(approximate="tanh")
self.linear_2 = nn.Linear(
hidden_size,
hidden_size,
bias=True,
)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class Attention(nn.Module):
def __init__(self):
super().__init__()
def attn_processor(self, attn_type):
if attn_type == 'torch':
return self.torch_attn_func
elif attn_type == 'parallel':
return self.parallel_attn_func
else:
raise Exception('Not supported attention type...')
def torch_attn_func(
self,
q,
k,
v,
attn_mask=None,
causal=False,
drop_rate=0.0,
**kwargs
):
if attn_mask is not None and attn_mask.dtype != torch.bool:
attn_mask = attn_mask.to(q.dtype)
if attn_mask is not None and attn_mask.ndim == 3: ## no head
n_heads = q.shape[2]
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)
q, k, v = map(lambda x: rearrange(x, 'b s h d -> b h s d'), (q, k, v))
if attn_mask is not None:
attn_mask = attn_mask.to(q.device)
x = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal
)
x = rearrange(x, 'b h s d -> b s h d')
return x
class RoPE1D:
def __init__(self, freq=1e4, F0=1.0, scaling_factor=1.0):
self.base = freq
self.F0 = F0
self.scaling_factor = scaling_factor
self.cache = {}
def get_cos_sin(self, D, seq_len, device, dtype):
if (D, seq_len, device, dtype) not in self.cache:
inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D))
t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype)
freqs = torch.cat((freqs, freqs), dim=-1)
cos = freqs.cos() # (Seq, Dim)
sin = freqs.sin()
self.cache[D, seq_len, device, dtype] = (cos, sin)
return self.cache[D, seq_len, device, dtype]
@staticmethod
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rope1d(self, tokens, pos1d, cos, sin):
assert pos1d.ndim == 2
cos = torch.nn.functional.embedding(pos1d, cos)[:, :, None, :]
sin = torch.nn.functional.embedding(pos1d, sin)[:, :, None, :]
return (tokens * cos) + (self.rotate_half(tokens) * sin)
def __call__(self, tokens, positions):
"""
input:
* tokens: batch_size x ntokens x nheads x dim
* positions: batch_size x ntokens (t position of each token)
output:
* tokens after applying RoPE2D (batch_size x ntokens x nheads x dim)
"""
D = tokens.size(3)
assert positions.ndim == 2 # Batch, Seq
cos, sin = self.get_cos_sin(D, int(positions.max()) + 1, tokens.device, tokens.dtype)
tokens = self.apply_rope1d(tokens, positions, cos, sin)
return tokens
class RoPE3D(RoPE1D):
def __init__(self, freq=1e4, F0=1.0, scaling_factor=1.0):
super(RoPE3D, self).__init__(freq, F0, scaling_factor)
self.position_cache = {}
def get_mesh_3d(self, rope_positions, bsz):
f, h, w = rope_positions
if f"{f}-{h}-{w}" not in self.position_cache:
x = torch.arange(f, device='cpu')
y = torch.arange(h, device='cpu')
z = torch.arange(w, device='cpu')
self.position_cache[f"{f}-{h}-{w}"] = torch.cartesian_prod(x, y, z).view(1, f*h*w, 3).expand(bsz, -1, 3)
return self.position_cache[f"{f}-{h}-{w}"]
def __call__(self, tokens, rope_positions, ch_split, parallel=False):
"""
input:
* tokens: batch_size x ntokens x nheads x dim
* rope_positions: list of (f, h, w)
output:
* tokens after applying RoPE2D (batch_size x ntokens x nheads x dim)
"""
assert sum(ch_split) == tokens.size(-1);
mesh_grid = self.get_mesh_3d(rope_positions, bsz=tokens.shape[0])
out = []
for i, (D, x) in enumerate(zip(ch_split, torch.split(tokens, ch_split, dim=-1))):
cos, sin = self.get_cos_sin(D, int(mesh_grid.max()) + 1, tokens.device, tokens.dtype)
if parallel:
pass
else:
mesh = mesh_grid[:, :, i].clone()
x = self.apply_rope1d(x, mesh.to(tokens.device), cos, sin)
out.append(x)
tokens = torch.cat(out, dim=-1)
return tokens
class SelfAttention(Attention):
def __init__(self, hidden_dim, head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type='torch'):
super().__init__()
self.head_dim = head_dim
self.n_heads = hidden_dim // head_dim
self.wqkv = nn.Linear(hidden_dim, hidden_dim*3, bias=bias)
self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias)
self.with_rope = with_rope
self.with_qk_norm = with_qk_norm
if self.with_qk_norm:
self.q_norm = RMSNorm(head_dim, elementwise_affine=True)
self.k_norm = RMSNorm(head_dim, elementwise_affine=True)
if self.with_rope:
self.rope_3d = RoPE3D(freq=1e4, F0=1.0, scaling_factor=1.0)
self.rope_ch_split = [64, 32, 32]
self.core_attention = self.attn_processor(attn_type=attn_type)
self.parallel = attn_type=='parallel'
def apply_rope3d(self, x, fhw_positions, rope_ch_split, parallel=True):
x = self.rope_3d(x, fhw_positions, rope_ch_split, parallel)
return x
def forward(
self,
x,
cu_seqlens=None,
max_seqlen=None,
rope_positions=None,
attn_mask=None
):
xqkv = self.wqkv(x)
xqkv = xqkv.view(*x.shape[:-1], self.n_heads, 3*self.head_dim)
xq, xk, xv = torch.split(xqkv, [self.head_dim]*3, dim=-1) ## seq_len, n, dim
if self.with_qk_norm:
xq = self.q_norm(xq)
xk = self.k_norm(xk)
if self.with_rope:
xq = self.apply_rope3d(xq, rope_positions, self.rope_ch_split, parallel=self.parallel)
xk = self.apply_rope3d(xk, rope_positions, self.rope_ch_split, parallel=self.parallel)
output = self.core_attention(
xq,
xk,
xv,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
attn_mask=attn_mask
)
output = rearrange(output, 'b s h d -> b s (h d)')
output = self.wo(output)
return output
class CrossAttention(Attention):
def __init__(self, hidden_dim, head_dim, bias=False, with_qk_norm=True, attn_type='torch'):
super().__init__()
self.head_dim = head_dim
self.n_heads = hidden_dim // head_dim
self.wq = nn.Linear(hidden_dim, hidden_dim, bias=bias)
self.wkv = nn.Linear(hidden_dim, hidden_dim*2, bias=bias)
self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias)
self.with_qk_norm = with_qk_norm
if self.with_qk_norm:
self.q_norm = RMSNorm(head_dim, elementwise_affine=True)
self.k_norm = RMSNorm(head_dim, elementwise_affine=True)
self.core_attention = self.attn_processor(attn_type=attn_type)
def forward(
self,
x: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attn_mask=None
):
xq = self.wq(x)
xq = xq.view(*xq.shape[:-1], self.n_heads, self.head_dim)
xkv = self.wkv(encoder_hidden_states)
xkv = xkv.view(*xkv.shape[:-1], self.n_heads, 2*self.head_dim)
xk, xv = torch.split(xkv, [self.head_dim]*2, dim=-1) ## seq_len, n, dim
if self.with_qk_norm:
xq = self.q_norm(xq)
xk = self.k_norm(xk)
output = self.core_attention(
xq,
xk,
xv,
attn_mask=attn_mask
)
output = rearrange(output, 'b s h d -> b s (h d)')
output = self.wo(output)
return output
class GELU(nn.Module):
r"""
GELU activation function with tanh approximation support with `approximate="tanh"`.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
self.approximate = approximate
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.gelu(gate, approximate=self.approximate)
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = self.gelu(hidden_states)
return hidden_states
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
inner_dim: Optional[int] = None,
dim_out: Optional[int] = None,
mult: int = 4,
bias: bool = False,
):
super().__init__()
inner_dim = dim*mult if inner_dim is None else inner_dim
dim_out = dim if dim_out is None else dim_out
self.net = nn.ModuleList([
GELU(dim, inner_dim, approximate="tanh", bias=bias),
nn.Identity(),
nn.Linear(inner_dim, dim_out, bias=bias)
])
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
def modulate(x, scale, shift):
x = x * (1 + scale) + shift
return x
def gate(x, gate):
x = gate * x
return x
class StepVideoTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
attention_type (`str`, *optional*, defaults to `"default"`):
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
positional_embeddings (`str`, *optional*, defaults to `None`):
The type of positional embeddings to apply to.
num_positional_embeddings (`int`, *optional*, defaults to `None`):
The maximum number of positional embeddings to apply.
"""
def __init__(
self,
dim: int,
attention_head_dim: int,
norm_eps: float = 1e-5,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = False,
attention_type: str = 'parallel'
):
super().__init__()
self.dim = dim
self.norm1 = nn.LayerNorm(dim, eps=norm_eps)
self.attn1 = SelfAttention(dim, attention_head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type=attention_type)
self.norm2 = nn.LayerNorm(dim, eps=norm_eps)
self.attn2 = CrossAttention(dim, attention_head_dim, bias=False, with_qk_norm=True, attn_type='torch')
self.ff = FeedForward(dim=dim, inner_dim=ff_inner_dim, dim_out=dim, bias=ff_bias)
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) /dim**0.5)
@torch.no_grad()
def forward(
self,
q: torch.Tensor,
kv: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
attn_mask = None,
rope_positions: list = None,
) -> torch.Tensor:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
torch.clone(chunk) for chunk in (self.scale_shift_table[None].to(dtype=q.dtype, device=q.device) + timestep.reshape(-1, 6, self.dim)).chunk(6, dim=1)
)
scale_shift_q = modulate(self.norm1(q), scale_msa, shift_msa)
attn_q = self.attn1(
scale_shift_q,
rope_positions=rope_positions
)
q = gate(attn_q, gate_msa) + q
attn_q = self.attn2(
q,
kv,
attn_mask
)
q = attn_q + q
scale_shift_q = modulate(self.norm2(q), scale_mlp, shift_mlp)
ff_output = self.ff(scale_shift_q)
q = gate(ff_output, gate_mlp) + q
return q
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
patch_size=64,
in_channels=3,
embed_dim=768,
layer_norm=False,
flatten=True,
bias=True,
):
super().__init__()
self.flatten = flatten
self.layer_norm = layer_norm
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
def forward(self, latent):
latent = self.proj(latent).to(latent.dtype)
if self.flatten:
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
if self.layer_norm:
latent = self.norm(latent)
return latent
class StepVideoModel(torch.nn.Module):
def __init__(
self,
num_attention_heads: int = 48,
attention_head_dim: int = 128,
in_channels: int = 64,
out_channels: Optional[int] = 64,
num_layers: int = 48,
dropout: float = 0.0,
patch_size: int = 1,
norm_type: str = "ada_norm_single",
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-6,
use_additional_conditions: Optional[bool] = False,
caption_channels: Optional[Union[int, List, Tuple]] = [6144, 1024],
attention_type: Optional[str] = "torch",
):
super().__init__()
# Set some common variables used across the board.
self.inner_dim = num_attention_heads * attention_head_dim
self.out_channels = in_channels if out_channels is None else out_channels
self.use_additional_conditions = use_additional_conditions
self.pos_embed = PatchEmbed(
patch_size=patch_size,
in_channels=in_channels,
embed_dim=self.inner_dim,
)
self.transformer_blocks = nn.ModuleList(
[
StepVideoTransformerBlock(
dim=self.inner_dim,
attention_head_dim=attention_head_dim,
attention_type=attention_type
)
for _ in range(num_layers)
]
)
# 3. Output blocks.
self.norm_out = nn.LayerNorm(self.inner_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels)
self.patch_size = patch_size
self.adaln_single = AdaLayerNormSingle(
self.inner_dim, use_additional_conditions=self.use_additional_conditions
)
if isinstance(caption_channels, int):
caption_channel = caption_channels
else:
caption_channel, clip_channel = caption_channels
self.clip_projection = nn.Linear(clip_channel, self.inner_dim)
self.caption_norm = nn.LayerNorm(caption_channel, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
self.caption_projection = PixArtAlphaTextProjection(
in_features=caption_channel, hidden_size=self.inner_dim
)
self.parallel = attention_type=='parallel'
def patchfy(self, hidden_states):
hidden_states = rearrange(hidden_states, 'b f c h w -> (b f) c h w')
hidden_states = self.pos_embed(hidden_states)
return hidden_states
def prepare_attn_mask(self, encoder_attention_mask, encoder_hidden_states, q_seqlen):
kv_seqlens = encoder_attention_mask.sum(dim=1).int()
mask = torch.zeros([len(kv_seqlens), q_seqlen, max(kv_seqlens)], dtype=torch.bool, device=encoder_attention_mask.device)
encoder_hidden_states = encoder_hidden_states[:,: max(kv_seqlens)]
for i, kv_len in enumerate(kv_seqlens):
mask[i, :, :kv_len] = 1
return encoder_hidden_states, mask
def block_forward(
self,
hidden_states,
encoder_hidden_states=None,
timestep=None,
rope_positions=None,
attn_mask=None,
parallel=True
):
for block in tqdm(self.transformer_blocks, desc="Transformer blocks"):
hidden_states = block(
hidden_states,
encoder_hidden_states,
timestep=timestep,
attn_mask=attn_mask,
rope_positions=rope_positions
)
return hidden_states
@torch.inference_mode()
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_hidden_states_2: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
fps: torch.Tensor=None,
return_dict: bool = False,
):
assert hidden_states.ndim==5; "hidden_states's shape should be (bsz, f, ch, h ,w)"
bsz, frame, _, height, width = hidden_states.shape
height, width = height // self.patch_size, width // self.patch_size
hidden_states = self.patchfy(hidden_states)
len_frame = hidden_states.shape[1]
if self.use_additional_conditions:
added_cond_kwargs = {
"resolution": torch.tensor([(height, width)]*bsz, device=hidden_states.device, dtype=hidden_states.dtype),
"nframe": torch.tensor([frame]*bsz, device=hidden_states.device, dtype=hidden_states.dtype),
"fps": fps
}
else:
added_cond_kwargs = {}
timestep, embedded_timestep = self.adaln_single(
timestep, added_cond_kwargs=added_cond_kwargs
)
encoder_hidden_states = self.caption_projection(self.caption_norm(encoder_hidden_states))
if encoder_hidden_states_2 is not None and hasattr(self, 'clip_projection'):
clip_embedding = self.clip_projection(encoder_hidden_states_2)
encoder_hidden_states = torch.cat([clip_embedding, encoder_hidden_states], dim=1)
hidden_states = rearrange(hidden_states, '(b f) l d-> b (f l) d', b=bsz, f=frame, l=len_frame).contiguous()
encoder_hidden_states, attn_mask = self.prepare_attn_mask(encoder_attention_mask, encoder_hidden_states, q_seqlen=frame*len_frame)
hidden_states = self.block_forward(
hidden_states,
encoder_hidden_states,
timestep=timestep,
rope_positions=[frame, height, width],
attn_mask=attn_mask,
parallel=self.parallel
)
hidden_states = rearrange(hidden_states, 'b (f l) d -> (b f) l d', b=bsz, f=frame, l=len_frame)
embedded_timestep = repeat(embedded_timestep, 'b d -> (b f) d', f=frame).contiguous()
shift, scale = (self.scale_shift_table[None].to(dtype=embedded_timestep.dtype, device=embedded_timestep.device) + embedded_timestep[:, None]).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
# unpatchify
hidden_states = hidden_states.reshape(
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = rearrange(hidden_states, 'n h w p q c -> n c h p w q')
output = hidden_states.reshape(
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
)
output = rearrange(output, '(b f) c h w -> b f c h w', f=frame)
if return_dict:
return {'x': output}
return output
@staticmethod
def state_dict_converter():
return StepVideoDiTStateDictConverter()
class StepVideoDiTStateDictConverter:
def __init__(self):
super().__init__()
def from_diffusers(self, state_dict):
return state_dict
def from_civitai(self, state_dict):
return state_dict