Spaces:
Running
on
L40S
Running
on
L40S
# Copyright 2025 StepFun Inc. All Rights Reserved. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# ============================================================================== | |
import os | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .stepvideo_dit import RMSNorm | |
from safetensors.torch import load_file | |
from transformers.modeling_utils import PretrainedConfig, PreTrainedModel | |
from einops import rearrange | |
import json | |
from typing import List | |
from functools import wraps | |
import warnings | |
class EmptyInitOnDevice(torch.overrides.TorchFunctionMode): | |
def __init__(self, device=None): | |
self.device = device | |
def __torch_function__(self, func, types, args=(), kwargs=None): | |
kwargs = kwargs or {} | |
if getattr(func, '__module__', None) == 'torch.nn.init': | |
if 'tensor' in kwargs: | |
return kwargs['tensor'] | |
else: | |
return args[0] | |
if self.device is not None and func in torch.utils._device._device_constructors() and kwargs.get('device') is None: | |
kwargs['device'] = self.device | |
return func(*args, **kwargs) | |
def with_empty_init(func): | |
def wrapper(*args, **kwargs): | |
with EmptyInitOnDevice('cpu'): | |
return func(*args, **kwargs) | |
return wrapper | |
class LLaMaEmbedding(nn.Module): | |
"""Language model embeddings. | |
Arguments: | |
hidden_size: hidden size | |
vocab_size: vocabulary size | |
max_sequence_length: maximum size of sequence. This | |
is used for positional embedding | |
embedding_dropout_prob: dropout probability for embeddings | |
init_method: weight initialization method | |
num_tokentypes: size of the token-type embeddings. 0 value | |
will ignore this embedding | |
""" | |
def __init__(self, | |
cfg, | |
): | |
super().__init__() | |
self.hidden_size = cfg.hidden_size | |
self.params_dtype = cfg.params_dtype | |
self.fp32_residual_connection = cfg.fp32_residual_connection | |
self.embedding_weights_in_fp32 = cfg.embedding_weights_in_fp32 | |
self.word_embeddings = torch.nn.Embedding( | |
cfg.padded_vocab_size, self.hidden_size, | |
) | |
self.embedding_dropout = torch.nn.Dropout(cfg.hidden_dropout) | |
def forward(self, input_ids): | |
# Embeddings. | |
if self.embedding_weights_in_fp32: | |
self.word_embeddings = self.word_embeddings.to(torch.float32) | |
embeddings = self.word_embeddings(input_ids) | |
if self.embedding_weights_in_fp32: | |
embeddings = embeddings.to(self.params_dtype) | |
self.word_embeddings = self.word_embeddings.to(self.params_dtype) | |
# Data format change to avoid explicit transposes : [b s h] --> [s b h]. | |
embeddings = embeddings.transpose(0, 1).contiguous() | |
# If the input flag for fp32 residual connection is set, convert for float. | |
if self.fp32_residual_connection: | |
embeddings = embeddings.float() | |
# Dropout. | |
embeddings = self.embedding_dropout(embeddings) | |
return embeddings | |
class StepChatTokenizer: | |
"""Step Chat Tokenizer""" | |
def __init__( | |
self, model_file, name="StepChatTokenizer", | |
bot_token="<|BOT|>", # Begin of Turn | |
eot_token="<|EOT|>", # End of Turn | |
call_start_token="<|CALL_START|>", # Call Start | |
call_end_token="<|CALL_END|>", # Call End | |
think_start_token="<|THINK_START|>", # Think Start | |
think_end_token="<|THINK_END|>", # Think End | |
mask_start_token="<|MASK_1e69f|>", # Mask start | |
mask_end_token="<|UNMASK_1e69f|>", # Mask end | |
): | |
import sentencepiece | |
self._tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file) | |
self._vocab = {} | |
self._inv_vocab = {} | |
self._special_tokens = {} | |
self._inv_special_tokens = {} | |
self._t5_tokens = [] | |
for idx in range(self._tokenizer.get_piece_size()): | |
text = self._tokenizer.id_to_piece(idx) | |
self._inv_vocab[idx] = text | |
self._vocab[text] = idx | |
if self._tokenizer.is_control(idx) or self._tokenizer.is_unknown(idx): | |
self._special_tokens[text] = idx | |
self._inv_special_tokens[idx] = text | |
self._unk_id = self._tokenizer.unk_id() | |
self._bos_id = self._tokenizer.bos_id() | |
self._eos_id = self._tokenizer.eos_id() | |
for token in [ | |
bot_token, eot_token, call_start_token, call_end_token, | |
think_start_token, think_end_token | |
]: | |
assert token in self._vocab, f"Token '{token}' not found in tokenizer" | |
assert token in self._special_tokens, f"Token '{token}' is not a special token" | |
for token in [mask_start_token, mask_end_token]: | |
assert token in self._vocab, f"Token '{token}' not found in tokenizer" | |
self._bot_id = self._tokenizer.piece_to_id(bot_token) | |
self._eot_id = self._tokenizer.piece_to_id(eot_token) | |
self._call_start_id = self._tokenizer.piece_to_id(call_start_token) | |
self._call_end_id = self._tokenizer.piece_to_id(call_end_token) | |
self._think_start_id = self._tokenizer.piece_to_id(think_start_token) | |
self._think_end_id = self._tokenizer.piece_to_id(think_end_token) | |
self._mask_start_id = self._tokenizer.piece_to_id(mask_start_token) | |
self._mask_end_id = self._tokenizer.piece_to_id(mask_end_token) | |
self._underline_id = self._tokenizer.piece_to_id("\u2581") | |
def vocab(self): | |
return self._vocab | |
def inv_vocab(self): | |
return self._inv_vocab | |
def vocab_size(self): | |
return self._tokenizer.vocab_size() | |
def tokenize(self, text: str) -> List[int]: | |
return self._tokenizer.encode_as_ids(text) | |
def detokenize(self, token_ids: List[int]) -> str: | |
return self._tokenizer.decode_ids(token_ids) | |
class Tokens: | |
def __init__(self, input_ids, cu_input_ids, attention_mask, cu_seqlens, max_seq_len) -> None: | |
self.input_ids = input_ids | |
self.attention_mask = attention_mask | |
self.cu_input_ids = cu_input_ids | |
self.cu_seqlens = cu_seqlens | |
self.max_seq_len = max_seq_len | |
def to(self, device): | |
self.input_ids = self.input_ids.to(device) | |
self.attention_mask = self.attention_mask.to(device) | |
self.cu_input_ids = self.cu_input_ids.to(device) | |
self.cu_seqlens = self.cu_seqlens.to(device) | |
return self | |
class Wrapped_StepChatTokenizer(StepChatTokenizer): | |
def __call__(self, text, max_length=320, padding="max_length", truncation=True, return_tensors="pt"): | |
# [bos, ..., eos, pad, pad, ..., pad] | |
self.BOS = 1 | |
self.EOS = 2 | |
self.PAD = 2 | |
out_tokens = [] | |
attn_mask = [] | |
if len(text) == 0: | |
part_tokens = [self.BOS] + [self.EOS] | |
valid_size = len(part_tokens) | |
if len(part_tokens) < max_length: | |
part_tokens += [self.PAD] * (max_length - valid_size) | |
out_tokens.append(part_tokens) | |
attn_mask.append([1]*valid_size+[0]*(max_length-valid_size)) | |
else: | |
for part in text: | |
part_tokens = self.tokenize(part) | |
part_tokens = part_tokens[:(max_length - 2)] # leave 2 space for bos and eos | |
part_tokens = [self.BOS] + part_tokens + [self.EOS] | |
valid_size = len(part_tokens) | |
if len(part_tokens) < max_length: | |
part_tokens += [self.PAD] * (max_length - valid_size) | |
out_tokens.append(part_tokens) | |
attn_mask.append([1]*valid_size+[0]*(max_length-valid_size)) | |
out_tokens = torch.tensor(out_tokens, dtype=torch.long) | |
attn_mask = torch.tensor(attn_mask, dtype=torch.long) | |
# padding y based on tp size | |
padded_len = 0 | |
padded_flag = True if padded_len > 0 else False | |
if padded_flag: | |
pad_tokens = torch.tensor([[self.PAD] * max_length], device=out_tokens.device) | |
pad_attn_mask = torch.tensor([[1]*padded_len+[0]*(max_length-padded_len)], device=attn_mask.device) | |
out_tokens = torch.cat([out_tokens, pad_tokens], dim=0) | |
attn_mask = torch.cat([attn_mask, pad_attn_mask], dim=0) | |
# cu_seqlens | |
cu_out_tokens = out_tokens.masked_select(attn_mask != 0).unsqueeze(0) | |
seqlen = attn_mask.sum(dim=1).tolist() | |
cu_seqlens = torch.cumsum(torch.tensor([0]+seqlen), 0).to(device=out_tokens.device,dtype=torch.int32) | |
max_seq_len = max(seqlen) | |
return Tokens(out_tokens, cu_out_tokens, attn_mask, cu_seqlens, max_seq_len) | |
def flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=None, causal=True, | |
return_attn_probs=False, tp_group_rank=0, tp_group_size=1): | |
softmax_scale = q.size(-1) ** (-0.5) if softmax_scale is None else softmax_scale | |
if hasattr(torch.ops.Optimus, "fwd"): | |
results = torch.ops.Optimus.fwd(q, k, v, None, dropout_p, softmax_scale, causal, return_attn_probs, None, tp_group_rank, tp_group_size)[0] | |
else: | |
warnings.warn("Cannot load `torch.ops.Optimus.fwd`. Using `torch.nn.functional.scaled_dot_product_attention` instead.") | |
results = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True, scale=softmax_scale).transpose(1, 2) | |
return results | |
class FlashSelfAttention(torch.nn.Module): | |
def __init__( | |
self, | |
attention_dropout=0.0, | |
): | |
super().__init__() | |
self.dropout_p = attention_dropout | |
def forward(self, q, k, v, cu_seqlens=None, max_seq_len=None): | |
if cu_seqlens is None: | |
output = flash_attn_func(q, k, v, dropout_p=self.dropout_p) | |
else: | |
raise ValueError('cu_seqlens is not supported!') | |
return output | |
def safediv(n, d): | |
q, r = divmod(n, d) | |
assert r == 0 | |
return q | |
class MultiQueryAttention(nn.Module): | |
def __init__(self, cfg, layer_id=None): | |
super().__init__() | |
self.head_dim = cfg.hidden_size // cfg.num_attention_heads | |
self.max_seq_len = cfg.seq_length | |
self.use_flash_attention = cfg.use_flash_attn | |
assert self.use_flash_attention, 'FlashAttention is required!' | |
self.n_groups = cfg.num_attention_groups | |
self.tp_size = 1 | |
self.n_local_heads = cfg.num_attention_heads | |
self.n_local_groups = self.n_groups | |
self.wqkv = nn.Linear( | |
cfg.hidden_size, | |
cfg.hidden_size + self.head_dim * 2 * self.n_groups, | |
bias=False, | |
) | |
self.wo = nn.Linear( | |
cfg.hidden_size, | |
cfg.hidden_size, | |
bias=False, | |
) | |
assert self.use_flash_attention, 'non-Flash attention not supported yet.' | |
self.core_attention = FlashSelfAttention(attention_dropout=cfg.attention_dropout) | |
self.layer_id = layer_id | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: Optional[torch.Tensor], | |
cu_seqlens: Optional[torch.Tensor], | |
max_seq_len: Optional[torch.Tensor], | |
): | |
seqlen, bsz, dim = x.shape | |
xqkv = self.wqkv(x) | |
xq, xkv = torch.split( | |
xqkv, | |
(dim // self.tp_size, | |
self.head_dim*2*self.n_groups // self.tp_size | |
), | |
dim=-1, | |
) | |
# gather on 1st dimension | |
xq = xq.view(seqlen, bsz, self.n_local_heads, self.head_dim) | |
xkv = xkv.view(seqlen, bsz, self.n_local_groups, 2 * self.head_dim) | |
xk, xv = xkv.chunk(2, -1) | |
# rotary embedding + flash attn | |
xq = rearrange(xq, "s b h d -> b s h d") | |
xk = rearrange(xk, "s b h d -> b s h d") | |
xv = rearrange(xv, "s b h d -> b s h d") | |
q_per_kv = self.n_local_heads // self.n_local_groups | |
if q_per_kv > 1: | |
b, s, h, d = xk.size() | |
if h == 1: | |
xk = xk.expand(b, s, q_per_kv, d) | |
xv = xv.expand(b, s, q_per_kv, d) | |
else: | |
''' To cover the cases where h > 1, we have | |
the following implementation, which is equivalent to: | |
xk = xk.repeat_interleave(q_per_kv, dim=-2) | |
xv = xv.repeat_interleave(q_per_kv, dim=-2) | |
but can avoid calling aten::item() that involves cpu. | |
''' | |
idx = torch.arange(q_per_kv * h, device=xk.device).reshape(q_per_kv, -1).permute(1, 0).flatten() | |
xk = torch.index_select(xk.repeat(1, 1, q_per_kv, 1), 2, idx).contiguous() | |
xv = torch.index_select(xv.repeat(1, 1, q_per_kv, 1), 2, idx).contiguous() | |
if self.use_flash_attention: | |
output = self.core_attention(xq, xk, xv, | |
cu_seqlens=cu_seqlens, | |
max_seq_len=max_seq_len) | |
# reduce-scatter only support first dimension now | |
output = rearrange(output, "b s h d -> s b (h d)").contiguous() | |
else: | |
xq, xk, xv = [ | |
rearrange(x, "b s ... -> s b ...").contiguous() | |
for x in (xq, xk, xv) | |
] | |
output = self.core_attention(xq, xk, xv, mask) | |
output = self.wo(output) | |
return output | |
class FeedForward(nn.Module): | |
def __init__( | |
self, | |
cfg, | |
dim: int, | |
hidden_dim: int, | |
layer_id: int, | |
multiple_of: int=256, | |
): | |
super().__init__() | |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
def swiglu(x): | |
x = torch.chunk(x, 2, dim=-1) | |
return F.silu(x[0]) * x[1] | |
self.swiglu = swiglu | |
self.w1 = nn.Linear( | |
dim, | |
2 * hidden_dim, | |
bias=False, | |
) | |
self.w2 = nn.Linear( | |
hidden_dim, | |
dim, | |
bias=False, | |
) | |
def forward(self, x): | |
x = self.swiglu(self.w1(x)) | |
output = self.w2(x) | |
return output | |
class TransformerBlock(nn.Module): | |
def __init__( | |
self, cfg, layer_id: int | |
): | |
super().__init__() | |
self.n_heads = cfg.num_attention_heads | |
self.dim = cfg.hidden_size | |
self.head_dim = cfg.hidden_size // cfg.num_attention_heads | |
self.attention = MultiQueryAttention( | |
cfg, | |
layer_id=layer_id, | |
) | |
self.feed_forward = FeedForward( | |
cfg, | |
dim=cfg.hidden_size, | |
hidden_dim=cfg.ffn_hidden_size, | |
layer_id=layer_id, | |
) | |
self.layer_id = layer_id | |
self.attention_norm = RMSNorm( | |
cfg.hidden_size, | |
eps=cfg.layernorm_epsilon, | |
) | |
self.ffn_norm = RMSNorm( | |
cfg.hidden_size, | |
eps=cfg.layernorm_epsilon, | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: Optional[torch.Tensor], | |
cu_seqlens: Optional[torch.Tensor], | |
max_seq_len: Optional[torch.Tensor], | |
): | |
residual = self.attention.forward( | |
self.attention_norm(x), mask, | |
cu_seqlens, max_seq_len | |
) | |
h = x + residual | |
ffn_res = self.feed_forward.forward(self.ffn_norm(h)) | |
out = h + ffn_res | |
return out | |
class Transformer(nn.Module): | |
def __init__( | |
self, | |
config, | |
max_seq_size=8192, | |
): | |
super().__init__() | |
self.num_layers = config.num_layers | |
self.layers = self._build_layers(config) | |
def _build_layers(self, config): | |
layers = torch.nn.ModuleList() | |
for layer_id in range(self.num_layers): | |
layers.append( | |
TransformerBlock( | |
config, | |
layer_id=layer_id + 1 , | |
) | |
) | |
return layers | |
def forward( | |
self, | |
hidden_states, | |
attention_mask, | |
cu_seqlens=None, | |
max_seq_len=None, | |
): | |
if max_seq_len is not None and not isinstance(max_seq_len, torch.Tensor): | |
max_seq_len = torch.tensor(max_seq_len, dtype=torch.int32, device="cpu") | |
for lid, layer in enumerate(self.layers): | |
hidden_states = layer( | |
hidden_states, | |
attention_mask, | |
cu_seqlens, | |
max_seq_len, | |
) | |
return hidden_states | |
class Step1Model(PreTrainedModel): | |
config_class=PretrainedConfig | |
def __init__( | |
self, | |
config, | |
): | |
super().__init__(config) | |
self.tok_embeddings = LLaMaEmbedding(config) | |
self.transformer = Transformer(config) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
): | |
hidden_states = self.tok_embeddings(input_ids) | |
hidden_states = self.transformer( | |
hidden_states, | |
attention_mask, | |
) | |
return hidden_states | |
class STEP1TextEncoder(torch.nn.Module): | |
def __init__(self, model_dir, max_length=320): | |
super(STEP1TextEncoder, self).__init__() | |
self.max_length = max_length | |
self.text_tokenizer = Wrapped_StepChatTokenizer(os.path.join(model_dir, 'step1_chat_tokenizer.model')) | |
text_encoder = Step1Model.from_pretrained(model_dir) | |
self.text_encoder = text_encoder.eval().to(torch.bfloat16) | |
def from_pretrained(path, torch_dtype=torch.bfloat16): | |
model = STEP1TextEncoder(path).to(torch_dtype) | |
return model | |
def forward(self, prompts, with_mask=True, max_length=None, device="cuda"): | |
self.device = device | |
with torch.no_grad(), torch.amp.autocast(dtype=torch.bfloat16, device_type=device): | |
if type(prompts) is str: | |
prompts = [prompts] | |
txt_tokens = self.text_tokenizer( | |
prompts, max_length=max_length or self.max_length, padding="max_length", truncation=True, return_tensors="pt" | |
) | |
y = self.text_encoder( | |
txt_tokens.input_ids.to(self.device), | |
attention_mask=txt_tokens.attention_mask.to(self.device) if with_mask else None | |
) | |
y_mask = txt_tokens.attention_mask | |
return y.transpose(0,1), y_mask | |