ReCamMaster / diffsynth /models /stepvideo_text_encoder.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
raw
history blame
19.3 kB
# Copyright 2025 StepFun Inc. All Rights Reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# ==============================================================================
import os
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from .stepvideo_dit import RMSNorm
from safetensors.torch import load_file
from transformers.modeling_utils import PretrainedConfig, PreTrainedModel
from einops import rearrange
import json
from typing import List
from functools import wraps
import warnings
class EmptyInitOnDevice(torch.overrides.TorchFunctionMode):
def __init__(self, device=None):
self.device = device
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
if getattr(func, '__module__', None) == 'torch.nn.init':
if 'tensor' in kwargs:
return kwargs['tensor']
else:
return args[0]
if self.device is not None and func in torch.utils._device._device_constructors() and kwargs.get('device') is None:
kwargs['device'] = self.device
return func(*args, **kwargs)
def with_empty_init(func):
@wraps(func)
def wrapper(*args, **kwargs):
with EmptyInitOnDevice('cpu'):
return func(*args, **kwargs)
return wrapper
class LLaMaEmbedding(nn.Module):
"""Language model embeddings.
Arguments:
hidden_size: hidden size
vocab_size: vocabulary size
max_sequence_length: maximum size of sequence. This
is used for positional embedding
embedding_dropout_prob: dropout probability for embeddings
init_method: weight initialization method
num_tokentypes: size of the token-type embeddings. 0 value
will ignore this embedding
"""
def __init__(self,
cfg,
):
super().__init__()
self.hidden_size = cfg.hidden_size
self.params_dtype = cfg.params_dtype
self.fp32_residual_connection = cfg.fp32_residual_connection
self.embedding_weights_in_fp32 = cfg.embedding_weights_in_fp32
self.word_embeddings = torch.nn.Embedding(
cfg.padded_vocab_size, self.hidden_size,
)
self.embedding_dropout = torch.nn.Dropout(cfg.hidden_dropout)
def forward(self, input_ids):
# Embeddings.
if self.embedding_weights_in_fp32:
self.word_embeddings = self.word_embeddings.to(torch.float32)
embeddings = self.word_embeddings(input_ids)
if self.embedding_weights_in_fp32:
embeddings = embeddings.to(self.params_dtype)
self.word_embeddings = self.word_embeddings.to(self.params_dtype)
# Data format change to avoid explicit transposes : [b s h] --> [s b h].
embeddings = embeddings.transpose(0, 1).contiguous()
# If the input flag for fp32 residual connection is set, convert for float.
if self.fp32_residual_connection:
embeddings = embeddings.float()
# Dropout.
embeddings = self.embedding_dropout(embeddings)
return embeddings
class StepChatTokenizer:
"""Step Chat Tokenizer"""
def __init__(
self, model_file, name="StepChatTokenizer",
bot_token="<|BOT|>", # Begin of Turn
eot_token="<|EOT|>", # End of Turn
call_start_token="<|CALL_START|>", # Call Start
call_end_token="<|CALL_END|>", # Call End
think_start_token="<|THINK_START|>", # Think Start
think_end_token="<|THINK_END|>", # Think End
mask_start_token="<|MASK_1e69f|>", # Mask start
mask_end_token="<|UNMASK_1e69f|>", # Mask end
):
import sentencepiece
self._tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file)
self._vocab = {}
self._inv_vocab = {}
self._special_tokens = {}
self._inv_special_tokens = {}
self._t5_tokens = []
for idx in range(self._tokenizer.get_piece_size()):
text = self._tokenizer.id_to_piece(idx)
self._inv_vocab[idx] = text
self._vocab[text] = idx
if self._tokenizer.is_control(idx) or self._tokenizer.is_unknown(idx):
self._special_tokens[text] = idx
self._inv_special_tokens[idx] = text
self._unk_id = self._tokenizer.unk_id()
self._bos_id = self._tokenizer.bos_id()
self._eos_id = self._tokenizer.eos_id()
for token in [
bot_token, eot_token, call_start_token, call_end_token,
think_start_token, think_end_token
]:
assert token in self._vocab, f"Token '{token}' not found in tokenizer"
assert token in self._special_tokens, f"Token '{token}' is not a special token"
for token in [mask_start_token, mask_end_token]:
assert token in self._vocab, f"Token '{token}' not found in tokenizer"
self._bot_id = self._tokenizer.piece_to_id(bot_token)
self._eot_id = self._tokenizer.piece_to_id(eot_token)
self._call_start_id = self._tokenizer.piece_to_id(call_start_token)
self._call_end_id = self._tokenizer.piece_to_id(call_end_token)
self._think_start_id = self._tokenizer.piece_to_id(think_start_token)
self._think_end_id = self._tokenizer.piece_to_id(think_end_token)
self._mask_start_id = self._tokenizer.piece_to_id(mask_start_token)
self._mask_end_id = self._tokenizer.piece_to_id(mask_end_token)
self._underline_id = self._tokenizer.piece_to_id("\u2581")
@property
def vocab(self):
return self._vocab
@property
def inv_vocab(self):
return self._inv_vocab
@property
def vocab_size(self):
return self._tokenizer.vocab_size()
def tokenize(self, text: str) -> List[int]:
return self._tokenizer.encode_as_ids(text)
def detokenize(self, token_ids: List[int]) -> str:
return self._tokenizer.decode_ids(token_ids)
class Tokens:
def __init__(self, input_ids, cu_input_ids, attention_mask, cu_seqlens, max_seq_len) -> None:
self.input_ids = input_ids
self.attention_mask = attention_mask
self.cu_input_ids = cu_input_ids
self.cu_seqlens = cu_seqlens
self.max_seq_len = max_seq_len
def to(self, device):
self.input_ids = self.input_ids.to(device)
self.attention_mask = self.attention_mask.to(device)
self.cu_input_ids = self.cu_input_ids.to(device)
self.cu_seqlens = self.cu_seqlens.to(device)
return self
class Wrapped_StepChatTokenizer(StepChatTokenizer):
def __call__(self, text, max_length=320, padding="max_length", truncation=True, return_tensors="pt"):
# [bos, ..., eos, pad, pad, ..., pad]
self.BOS = 1
self.EOS = 2
self.PAD = 2
out_tokens = []
attn_mask = []
if len(text) == 0:
part_tokens = [self.BOS] + [self.EOS]
valid_size = len(part_tokens)
if len(part_tokens) < max_length:
part_tokens += [self.PAD] * (max_length - valid_size)
out_tokens.append(part_tokens)
attn_mask.append([1]*valid_size+[0]*(max_length-valid_size))
else:
for part in text:
part_tokens = self.tokenize(part)
part_tokens = part_tokens[:(max_length - 2)] # leave 2 space for bos and eos
part_tokens = [self.BOS] + part_tokens + [self.EOS]
valid_size = len(part_tokens)
if len(part_tokens) < max_length:
part_tokens += [self.PAD] * (max_length - valid_size)
out_tokens.append(part_tokens)
attn_mask.append([1]*valid_size+[0]*(max_length-valid_size))
out_tokens = torch.tensor(out_tokens, dtype=torch.long)
attn_mask = torch.tensor(attn_mask, dtype=torch.long)
# padding y based on tp size
padded_len = 0
padded_flag = True if padded_len > 0 else False
if padded_flag:
pad_tokens = torch.tensor([[self.PAD] * max_length], device=out_tokens.device)
pad_attn_mask = torch.tensor([[1]*padded_len+[0]*(max_length-padded_len)], device=attn_mask.device)
out_tokens = torch.cat([out_tokens, pad_tokens], dim=0)
attn_mask = torch.cat([attn_mask, pad_attn_mask], dim=0)
# cu_seqlens
cu_out_tokens = out_tokens.masked_select(attn_mask != 0).unsqueeze(0)
seqlen = attn_mask.sum(dim=1).tolist()
cu_seqlens = torch.cumsum(torch.tensor([0]+seqlen), 0).to(device=out_tokens.device,dtype=torch.int32)
max_seq_len = max(seqlen)
return Tokens(out_tokens, cu_out_tokens, attn_mask, cu_seqlens, max_seq_len)
def flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=None, causal=True,
return_attn_probs=False, tp_group_rank=0, tp_group_size=1):
softmax_scale = q.size(-1) ** (-0.5) if softmax_scale is None else softmax_scale
if hasattr(torch.ops.Optimus, "fwd"):
results = torch.ops.Optimus.fwd(q, k, v, None, dropout_p, softmax_scale, causal, return_attn_probs, None, tp_group_rank, tp_group_size)[0]
else:
warnings.warn("Cannot load `torch.ops.Optimus.fwd`. Using `torch.nn.functional.scaled_dot_product_attention` instead.")
results = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True, scale=softmax_scale).transpose(1, 2)
return results
class FlashSelfAttention(torch.nn.Module):
def __init__(
self,
attention_dropout=0.0,
):
super().__init__()
self.dropout_p = attention_dropout
def forward(self, q, k, v, cu_seqlens=None, max_seq_len=None):
if cu_seqlens is None:
output = flash_attn_func(q, k, v, dropout_p=self.dropout_p)
else:
raise ValueError('cu_seqlens is not supported!')
return output
def safediv(n, d):
q, r = divmod(n, d)
assert r == 0
return q
class MultiQueryAttention(nn.Module):
def __init__(self, cfg, layer_id=None):
super().__init__()
self.head_dim = cfg.hidden_size // cfg.num_attention_heads
self.max_seq_len = cfg.seq_length
self.use_flash_attention = cfg.use_flash_attn
assert self.use_flash_attention, 'FlashAttention is required!'
self.n_groups = cfg.num_attention_groups
self.tp_size = 1
self.n_local_heads = cfg.num_attention_heads
self.n_local_groups = self.n_groups
self.wqkv = nn.Linear(
cfg.hidden_size,
cfg.hidden_size + self.head_dim * 2 * self.n_groups,
bias=False,
)
self.wo = nn.Linear(
cfg.hidden_size,
cfg.hidden_size,
bias=False,
)
assert self.use_flash_attention, 'non-Flash attention not supported yet.'
self.core_attention = FlashSelfAttention(attention_dropout=cfg.attention_dropout)
self.layer_id = layer_id
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor],
cu_seqlens: Optional[torch.Tensor],
max_seq_len: Optional[torch.Tensor],
):
seqlen, bsz, dim = x.shape
xqkv = self.wqkv(x)
xq, xkv = torch.split(
xqkv,
(dim // self.tp_size,
self.head_dim*2*self.n_groups // self.tp_size
),
dim=-1,
)
# gather on 1st dimension
xq = xq.view(seqlen, bsz, self.n_local_heads, self.head_dim)
xkv = xkv.view(seqlen, bsz, self.n_local_groups, 2 * self.head_dim)
xk, xv = xkv.chunk(2, -1)
# rotary embedding + flash attn
xq = rearrange(xq, "s b h d -> b s h d")
xk = rearrange(xk, "s b h d -> b s h d")
xv = rearrange(xv, "s b h d -> b s h d")
q_per_kv = self.n_local_heads // self.n_local_groups
if q_per_kv > 1:
b, s, h, d = xk.size()
if h == 1:
xk = xk.expand(b, s, q_per_kv, d)
xv = xv.expand(b, s, q_per_kv, d)
else:
''' To cover the cases where h > 1, we have
the following implementation, which is equivalent to:
xk = xk.repeat_interleave(q_per_kv, dim=-2)
xv = xv.repeat_interleave(q_per_kv, dim=-2)
but can avoid calling aten::item() that involves cpu.
'''
idx = torch.arange(q_per_kv * h, device=xk.device).reshape(q_per_kv, -1).permute(1, 0).flatten()
xk = torch.index_select(xk.repeat(1, 1, q_per_kv, 1), 2, idx).contiguous()
xv = torch.index_select(xv.repeat(1, 1, q_per_kv, 1), 2, idx).contiguous()
if self.use_flash_attention:
output = self.core_attention(xq, xk, xv,
cu_seqlens=cu_seqlens,
max_seq_len=max_seq_len)
# reduce-scatter only support first dimension now
output = rearrange(output, "b s h d -> s b (h d)").contiguous()
else:
xq, xk, xv = [
rearrange(x, "b s ... -> s b ...").contiguous()
for x in (xq, xk, xv)
]
output = self.core_attention(xq, xk, xv, mask)
output = self.wo(output)
return output
class FeedForward(nn.Module):
def __init__(
self,
cfg,
dim: int,
hidden_dim: int,
layer_id: int,
multiple_of: int=256,
):
super().__init__()
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
def swiglu(x):
x = torch.chunk(x, 2, dim=-1)
return F.silu(x[0]) * x[1]
self.swiglu = swiglu
self.w1 = nn.Linear(
dim,
2 * hidden_dim,
bias=False,
)
self.w2 = nn.Linear(
hidden_dim,
dim,
bias=False,
)
def forward(self, x):
x = self.swiglu(self.w1(x))
output = self.w2(x)
return output
class TransformerBlock(nn.Module):
def __init__(
self, cfg, layer_id: int
):
super().__init__()
self.n_heads = cfg.num_attention_heads
self.dim = cfg.hidden_size
self.head_dim = cfg.hidden_size // cfg.num_attention_heads
self.attention = MultiQueryAttention(
cfg,
layer_id=layer_id,
)
self.feed_forward = FeedForward(
cfg,
dim=cfg.hidden_size,
hidden_dim=cfg.ffn_hidden_size,
layer_id=layer_id,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(
cfg.hidden_size,
eps=cfg.layernorm_epsilon,
)
self.ffn_norm = RMSNorm(
cfg.hidden_size,
eps=cfg.layernorm_epsilon,
)
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor],
cu_seqlens: Optional[torch.Tensor],
max_seq_len: Optional[torch.Tensor],
):
residual = self.attention.forward(
self.attention_norm(x), mask,
cu_seqlens, max_seq_len
)
h = x + residual
ffn_res = self.feed_forward.forward(self.ffn_norm(h))
out = h + ffn_res
return out
class Transformer(nn.Module):
def __init__(
self,
config,
max_seq_size=8192,
):
super().__init__()
self.num_layers = config.num_layers
self.layers = self._build_layers(config)
def _build_layers(self, config):
layers = torch.nn.ModuleList()
for layer_id in range(self.num_layers):
layers.append(
TransformerBlock(
config,
layer_id=layer_id + 1 ,
)
)
return layers
def forward(
self,
hidden_states,
attention_mask,
cu_seqlens=None,
max_seq_len=None,
):
if max_seq_len is not None and not isinstance(max_seq_len, torch.Tensor):
max_seq_len = torch.tensor(max_seq_len, dtype=torch.int32, device="cpu")
for lid, layer in enumerate(self.layers):
hidden_states = layer(
hidden_states,
attention_mask,
cu_seqlens,
max_seq_len,
)
return hidden_states
class Step1Model(PreTrainedModel):
config_class=PretrainedConfig
@with_empty_init
def __init__(
self,
config,
):
super().__init__(config)
self.tok_embeddings = LLaMaEmbedding(config)
self.transformer = Transformer(config)
def forward(
self,
input_ids=None,
attention_mask=None,
):
hidden_states = self.tok_embeddings(input_ids)
hidden_states = self.transformer(
hidden_states,
attention_mask,
)
return hidden_states
class STEP1TextEncoder(torch.nn.Module):
def __init__(self, model_dir, max_length=320):
super(STEP1TextEncoder, self).__init__()
self.max_length = max_length
self.text_tokenizer = Wrapped_StepChatTokenizer(os.path.join(model_dir, 'step1_chat_tokenizer.model'))
text_encoder = Step1Model.from_pretrained(model_dir)
self.text_encoder = text_encoder.eval().to(torch.bfloat16)
@staticmethod
def from_pretrained(path, torch_dtype=torch.bfloat16):
model = STEP1TextEncoder(path).to(torch_dtype)
return model
@torch.no_grad
def forward(self, prompts, with_mask=True, max_length=None, device="cuda"):
self.device = device
with torch.no_grad(), torch.amp.autocast(dtype=torch.bfloat16, device_type=device):
if type(prompts) is str:
prompts = [prompts]
txt_tokens = self.text_tokenizer(
prompts, max_length=max_length or self.max_length, padding="max_length", truncation=True, return_tensors="pt"
)
y = self.text_encoder(
txt_tokens.input_ids.to(self.device),
attention_mask=txt_tokens.attention_mask.to(self.device) if with_mask else None
)
y_mask = txt_tokens.attention_mask
return y.transpose(0,1), y_mask