jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
raw
history blame
9.73 kB
import torch
from einops import rearrange, repeat
class TileWorker:
def __init__(self):
pass
def mask(self, height, width, border_width):
# Create a mask with shape (height, width).
# The centre area is filled with 1, and the border line is filled with values in range (0, 1].
x = torch.arange(height).repeat(width, 1).T
y = torch.arange(width).repeat(height, 1)
mask = torch.stack([x + 1, height - x, y + 1, width - y]).min(dim=0).values
mask = (mask / border_width).clip(0, 1)
return mask
def tile(self, model_input, tile_size, tile_stride, tile_device, tile_dtype):
# Convert a tensor (b, c, h, w) to (b, c, tile_size, tile_size, tile_num)
batch_size, channel, _, _ = model_input.shape
model_input = model_input.to(device=tile_device, dtype=tile_dtype)
unfold_operator = torch.nn.Unfold(
kernel_size=(tile_size, tile_size),
stride=(tile_stride, tile_stride)
)
model_input = unfold_operator(model_input)
model_input = model_input.view((batch_size, channel, tile_size, tile_size, -1))
return model_input
def tiled_inference(self, forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype):
# Call y=forward_fn(x) for each tile
tile_num = model_input.shape[-1]
model_output_stack = []
for tile_id in range(0, tile_num, tile_batch_size):
# process input
tile_id_ = min(tile_id + tile_batch_size, tile_num)
x = model_input[:, :, :, :, tile_id: tile_id_]
x = x.to(device=inference_device, dtype=inference_dtype)
x = rearrange(x, "b c h w n -> (n b) c h w")
# process output
y = forward_fn(x)
y = rearrange(y, "(n b) c h w -> b c h w n", n=tile_id_-tile_id)
y = y.to(device=tile_device, dtype=tile_dtype)
model_output_stack.append(y)
model_output = torch.concat(model_output_stack, dim=-1)
return model_output
def io_scale(self, model_output, tile_size):
# Determine the size modification happened in forward_fn
# We only consider the same scale on height and width.
io_scale = model_output.shape[2] / tile_size
return io_scale
def untile(self, model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype):
# The reversed function of tile
mask = self.mask(tile_size, tile_size, border_width)
mask = mask.to(device=tile_device, dtype=tile_dtype)
mask = rearrange(mask, "h w -> 1 1 h w 1")
model_output = model_output * mask
fold_operator = torch.nn.Fold(
output_size=(height, width),
kernel_size=(tile_size, tile_size),
stride=(tile_stride, tile_stride)
)
mask = repeat(mask[0, 0, :, :, 0], "h w -> 1 (h w) n", n=model_output.shape[-1])
model_output = rearrange(model_output, "b c h w n -> b (c h w) n")
model_output = fold_operator(model_output) / fold_operator(mask)
return model_output
def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_batch_size=1, tile_device="cpu", tile_dtype=torch.float32, border_width=None):
# Prepare
inference_device, inference_dtype = model_input.device, model_input.dtype
height, width = model_input.shape[2], model_input.shape[3]
border_width = int(tile_stride*0.5) if border_width is None else border_width
# tile
model_input = self.tile(model_input, tile_size, tile_stride, tile_device, tile_dtype)
# inference
model_output = self.tiled_inference(forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype)
# resize
io_scale = self.io_scale(model_output, tile_size)
height, width = int(height*io_scale), int(width*io_scale)
tile_size, tile_stride = int(tile_size*io_scale), int(tile_stride*io_scale)
border_width = int(border_width*io_scale)
# untile
model_output = self.untile(model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype)
# Done!
model_output = model_output.to(device=inference_device, dtype=inference_dtype)
return model_output
class FastTileWorker:
def __init__(self):
pass
def build_mask(self, data, is_bound):
_, _, H, W = data.shape
h = repeat(torch.arange(H), "H -> H W", H=H, W=W)
w = repeat(torch.arange(W), "W -> H W", H=H, W=W)
border_width = (H + W) // 4
pad = torch.ones_like(h) * border_width
mask = torch.stack([
pad if is_bound[0] else h + 1,
pad if is_bound[1] else H - h,
pad if is_bound[2] else w + 1,
pad if is_bound[3] else W - w
]).min(dim=0).values
mask = mask.clip(1, border_width)
mask = (mask / border_width).to(dtype=data.dtype, device=data.device)
mask = rearrange(mask, "H W -> 1 H W")
return mask
def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_device="cpu", tile_dtype=torch.float32, border_width=None):
# Prepare
B, C, H, W = model_input.shape
border_width = int(tile_stride*0.5) if border_width is None else border_width
weight = torch.zeros((1, 1, H, W), dtype=tile_dtype, device=tile_device)
values = torch.zeros((B, C, H, W), dtype=tile_dtype, device=tile_device)
# Split tasks
tasks = []
for h in range(0, H, tile_stride):
for w in range(0, W, tile_stride):
if (h-tile_stride >= 0 and h-tile_stride+tile_size >= H) or (w-tile_stride >= 0 and w-tile_stride+tile_size >= W):
continue
h_, w_ = h + tile_size, w + tile_size
if h_ > H: h, h_ = H - tile_size, H
if w_ > W: w, w_ = W - tile_size, W
tasks.append((h, h_, w, w_))
# Run
for hl, hr, wl, wr in tasks:
# Forward
hidden_states_batch = forward_fn(hl, hr, wl, wr).to(dtype=tile_dtype, device=tile_device)
mask = self.build_mask(hidden_states_batch, is_bound=(hl==0, hr>=H, wl==0, wr>=W))
values[:, :, hl:hr, wl:wr] += hidden_states_batch * mask
weight[:, :, hl:hr, wl:wr] += mask
values /= weight
return values
class TileWorker2Dto3D:
"""
Process 3D tensors, but only enable TileWorker on 2D.
"""
def __init__(self):
pass
def build_mask(self, T, H, W, dtype, device, is_bound, border_width):
t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W)
h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W)
w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W)
border_width = (H + W) // 4 if border_width is None else border_width
pad = torch.ones_like(h) * border_width
mask = torch.stack([
pad if is_bound[0] else t + 1,
pad if is_bound[1] else T - t,
pad if is_bound[2] else h + 1,
pad if is_bound[3] else H - h,
pad if is_bound[4] else w + 1,
pad if is_bound[5] else W - w
]).min(dim=0).values
mask = mask.clip(1, border_width)
mask = (mask / border_width).to(dtype=dtype, device=device)
mask = rearrange(mask, "T H W -> 1 1 T H W")
return mask
def tiled_forward(
self,
forward_fn,
model_input,
tile_size, tile_stride,
tile_device="cpu", tile_dtype=torch.float32,
computation_device="cuda", computation_dtype=torch.float32,
border_width=None, scales=[1, 1, 1, 1],
progress_bar=lambda x:x
):
B, C, T, H, W = model_input.shape
scale_C, scale_T, scale_H, scale_W = scales
tile_size_H, tile_size_W = tile_size
tile_stride_H, tile_stride_W = tile_stride
value = torch.zeros((B, int(C*scale_C), int(T*scale_T), int(H*scale_H), int(W*scale_W)), dtype=tile_dtype, device=tile_device)
weight = torch.zeros((1, 1, int(T*scale_T), int(H*scale_H), int(W*scale_W)), dtype=tile_dtype, device=tile_device)
# Split tasks
tasks = []
for h in range(0, H, tile_stride_H):
for w in range(0, W, tile_stride_W):
if (h-tile_stride_H >= 0 and h-tile_stride_H+tile_size_H >= H) or (w-tile_stride_W >= 0 and w-tile_stride_W+tile_size_W >= W):
continue
h_, w_ = h + tile_size_H, w + tile_size_W
if h_ > H: h, h_ = max(H - tile_size_H, 0), H
if w_ > W: w, w_ = max(W - tile_size_W, 0), W
tasks.append((h, h_, w, w_))
# Run
for hl, hr, wl, wr in progress_bar(tasks):
mask = self.build_mask(
int(T*scale_T), int((hr-hl)*scale_H), int((wr-wl)*scale_W),
tile_dtype, tile_device,
is_bound=(True, True, hl==0, hr>=H, wl==0, wr>=W),
border_width=border_width
)
grid_input = model_input[:, :, :, hl:hr, wl:wr].to(dtype=computation_dtype, device=computation_device)
grid_output = forward_fn(grid_input).to(dtype=tile_dtype, device=tile_device)
value[:, :, :, int(hl*scale_H):int(hr*scale_H), int(wl*scale_W):int(wr*scale_W)] += grid_output * mask
weight[:, :, :, int(hl*scale_H):int(hr*scale_H), int(wl*scale_W):int(wr*scale_W)] += mask
value = value / weight
return value