Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
from einops import rearrange, repeat | |
class TileWorker: | |
def __init__(self): | |
pass | |
def mask(self, height, width, border_width): | |
# Create a mask with shape (height, width). | |
# The centre area is filled with 1, and the border line is filled with values in range (0, 1]. | |
x = torch.arange(height).repeat(width, 1).T | |
y = torch.arange(width).repeat(height, 1) | |
mask = torch.stack([x + 1, height - x, y + 1, width - y]).min(dim=0).values | |
mask = (mask / border_width).clip(0, 1) | |
return mask | |
def tile(self, model_input, tile_size, tile_stride, tile_device, tile_dtype): | |
# Convert a tensor (b, c, h, w) to (b, c, tile_size, tile_size, tile_num) | |
batch_size, channel, _, _ = model_input.shape | |
model_input = model_input.to(device=tile_device, dtype=tile_dtype) | |
unfold_operator = torch.nn.Unfold( | |
kernel_size=(tile_size, tile_size), | |
stride=(tile_stride, tile_stride) | |
) | |
model_input = unfold_operator(model_input) | |
model_input = model_input.view((batch_size, channel, tile_size, tile_size, -1)) | |
return model_input | |
def tiled_inference(self, forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype): | |
# Call y=forward_fn(x) for each tile | |
tile_num = model_input.shape[-1] | |
model_output_stack = [] | |
for tile_id in range(0, tile_num, tile_batch_size): | |
# process input | |
tile_id_ = min(tile_id + tile_batch_size, tile_num) | |
x = model_input[:, :, :, :, tile_id: tile_id_] | |
x = x.to(device=inference_device, dtype=inference_dtype) | |
x = rearrange(x, "b c h w n -> (n b) c h w") | |
# process output | |
y = forward_fn(x) | |
y = rearrange(y, "(n b) c h w -> b c h w n", n=tile_id_-tile_id) | |
y = y.to(device=tile_device, dtype=tile_dtype) | |
model_output_stack.append(y) | |
model_output = torch.concat(model_output_stack, dim=-1) | |
return model_output | |
def io_scale(self, model_output, tile_size): | |
# Determine the size modification happened in forward_fn | |
# We only consider the same scale on height and width. | |
io_scale = model_output.shape[2] / tile_size | |
return io_scale | |
def untile(self, model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype): | |
# The reversed function of tile | |
mask = self.mask(tile_size, tile_size, border_width) | |
mask = mask.to(device=tile_device, dtype=tile_dtype) | |
mask = rearrange(mask, "h w -> 1 1 h w 1") | |
model_output = model_output * mask | |
fold_operator = torch.nn.Fold( | |
output_size=(height, width), | |
kernel_size=(tile_size, tile_size), | |
stride=(tile_stride, tile_stride) | |
) | |
mask = repeat(mask[0, 0, :, :, 0], "h w -> 1 (h w) n", n=model_output.shape[-1]) | |
model_output = rearrange(model_output, "b c h w n -> b (c h w) n") | |
model_output = fold_operator(model_output) / fold_operator(mask) | |
return model_output | |
def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_batch_size=1, tile_device="cpu", tile_dtype=torch.float32, border_width=None): | |
# Prepare | |
inference_device, inference_dtype = model_input.device, model_input.dtype | |
height, width = model_input.shape[2], model_input.shape[3] | |
border_width = int(tile_stride*0.5) if border_width is None else border_width | |
# tile | |
model_input = self.tile(model_input, tile_size, tile_stride, tile_device, tile_dtype) | |
# inference | |
model_output = self.tiled_inference(forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype) | |
# resize | |
io_scale = self.io_scale(model_output, tile_size) | |
height, width = int(height*io_scale), int(width*io_scale) | |
tile_size, tile_stride = int(tile_size*io_scale), int(tile_stride*io_scale) | |
border_width = int(border_width*io_scale) | |
# untile | |
model_output = self.untile(model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype) | |
# Done! | |
model_output = model_output.to(device=inference_device, dtype=inference_dtype) | |
return model_output | |
class FastTileWorker: | |
def __init__(self): | |
pass | |
def build_mask(self, data, is_bound): | |
_, _, H, W = data.shape | |
h = repeat(torch.arange(H), "H -> H W", H=H, W=W) | |
w = repeat(torch.arange(W), "W -> H W", H=H, W=W) | |
border_width = (H + W) // 4 | |
pad = torch.ones_like(h) * border_width | |
mask = torch.stack([ | |
pad if is_bound[0] else h + 1, | |
pad if is_bound[1] else H - h, | |
pad if is_bound[2] else w + 1, | |
pad if is_bound[3] else W - w | |
]).min(dim=0).values | |
mask = mask.clip(1, border_width) | |
mask = (mask / border_width).to(dtype=data.dtype, device=data.device) | |
mask = rearrange(mask, "H W -> 1 H W") | |
return mask | |
def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_device="cpu", tile_dtype=torch.float32, border_width=None): | |
# Prepare | |
B, C, H, W = model_input.shape | |
border_width = int(tile_stride*0.5) if border_width is None else border_width | |
weight = torch.zeros((1, 1, H, W), dtype=tile_dtype, device=tile_device) | |
values = torch.zeros((B, C, H, W), dtype=tile_dtype, device=tile_device) | |
# Split tasks | |
tasks = [] | |
for h in range(0, H, tile_stride): | |
for w in range(0, W, tile_stride): | |
if (h-tile_stride >= 0 and h-tile_stride+tile_size >= H) or (w-tile_stride >= 0 and w-tile_stride+tile_size >= W): | |
continue | |
h_, w_ = h + tile_size, w + tile_size | |
if h_ > H: h, h_ = H - tile_size, H | |
if w_ > W: w, w_ = W - tile_size, W | |
tasks.append((h, h_, w, w_)) | |
# Run | |
for hl, hr, wl, wr in tasks: | |
# Forward | |
hidden_states_batch = forward_fn(hl, hr, wl, wr).to(dtype=tile_dtype, device=tile_device) | |
mask = self.build_mask(hidden_states_batch, is_bound=(hl==0, hr>=H, wl==0, wr>=W)) | |
values[:, :, hl:hr, wl:wr] += hidden_states_batch * mask | |
weight[:, :, hl:hr, wl:wr] += mask | |
values /= weight | |
return values | |
class TileWorker2Dto3D: | |
""" | |
Process 3D tensors, but only enable TileWorker on 2D. | |
""" | |
def __init__(self): | |
pass | |
def build_mask(self, T, H, W, dtype, device, is_bound, border_width): | |
t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W) | |
h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W) | |
w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W) | |
border_width = (H + W) // 4 if border_width is None else border_width | |
pad = torch.ones_like(h) * border_width | |
mask = torch.stack([ | |
pad if is_bound[0] else t + 1, | |
pad if is_bound[1] else T - t, | |
pad if is_bound[2] else h + 1, | |
pad if is_bound[3] else H - h, | |
pad if is_bound[4] else w + 1, | |
pad if is_bound[5] else W - w | |
]).min(dim=0).values | |
mask = mask.clip(1, border_width) | |
mask = (mask / border_width).to(dtype=dtype, device=device) | |
mask = rearrange(mask, "T H W -> 1 1 T H W") | |
return mask | |
def tiled_forward( | |
self, | |
forward_fn, | |
model_input, | |
tile_size, tile_stride, | |
tile_device="cpu", tile_dtype=torch.float32, | |
computation_device="cuda", computation_dtype=torch.float32, | |
border_width=None, scales=[1, 1, 1, 1], | |
progress_bar=lambda x:x | |
): | |
B, C, T, H, W = model_input.shape | |
scale_C, scale_T, scale_H, scale_W = scales | |
tile_size_H, tile_size_W = tile_size | |
tile_stride_H, tile_stride_W = tile_stride | |
value = torch.zeros((B, int(C*scale_C), int(T*scale_T), int(H*scale_H), int(W*scale_W)), dtype=tile_dtype, device=tile_device) | |
weight = torch.zeros((1, 1, int(T*scale_T), int(H*scale_H), int(W*scale_W)), dtype=tile_dtype, device=tile_device) | |
# Split tasks | |
tasks = [] | |
for h in range(0, H, tile_stride_H): | |
for w in range(0, W, tile_stride_W): | |
if (h-tile_stride_H >= 0 and h-tile_stride_H+tile_size_H >= H) or (w-tile_stride_W >= 0 and w-tile_stride_W+tile_size_W >= W): | |
continue | |
h_, w_ = h + tile_size_H, w + tile_size_W | |
if h_ > H: h, h_ = max(H - tile_size_H, 0), H | |
if w_ > W: w, w_ = max(W - tile_size_W, 0), W | |
tasks.append((h, h_, w, w_)) | |
# Run | |
for hl, hr, wl, wr in progress_bar(tasks): | |
mask = self.build_mask( | |
int(T*scale_T), int((hr-hl)*scale_H), int((wr-wl)*scale_W), | |
tile_dtype, tile_device, | |
is_bound=(True, True, hl==0, hr>=H, wl==0, wr>=W), | |
border_width=border_width | |
) | |
grid_input = model_input[:, :, :, hl:hr, wl:wr].to(dtype=computation_dtype, device=computation_device) | |
grid_output = forward_fn(grid_input).to(dtype=tile_dtype, device=tile_device) | |
value[:, :, :, int(hl*scale_H):int(hr*scale_H), int(wl*scale_W):int(wr*scale_W)] += grid_output * mask | |
weight[:, :, :, int(hl*scale_H):int(hr*scale_H), int(wl*scale_W):int(wr*scale_W)] += mask | |
value = value / weight | |
return value |