ReCamMaster / diffsynth /models /wan_video_dit.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
raw
history blame
19.7 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Tuple, Optional
from einops import rearrange
from .utils import hash_state_dict_keys
try:
import flash_attn_interface
FLASH_ATTN_3_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_3_AVAILABLE = False
try:
import flash_attn
FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_2_AVAILABLE = False
try:
from sageattention import sageattn
SAGE_ATTN_AVAILABLE = True
except ModuleNotFoundError:
SAGE_ATTN_AVAILABLE = False
def flash_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, num_heads: int, compatibility_mode=False):
if compatibility_mode:
q = rearrange(q, "b s (n d) -> b n s d", n=num_heads)
k = rearrange(k, "b s (n d) -> b n s d", n=num_heads)
v = rearrange(v, "b s (n d) -> b n s d", n=num_heads)
x = F.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "b n s d -> b s (n d)", n=num_heads)
elif FLASH_ATTN_3_AVAILABLE:
q = rearrange(q, "b s (n d) -> b s n d", n=num_heads)
k = rearrange(k, "b s (n d) -> b s n d", n=num_heads)
v = rearrange(v, "b s (n d) -> b s n d", n=num_heads)
x = flash_attn_interface.flash_attn_func(q, k, v)
x = rearrange(x, "b s n d -> b s (n d)", n=num_heads)
elif FLASH_ATTN_2_AVAILABLE:
q = rearrange(q, "b s (n d) -> b s n d", n=num_heads)
k = rearrange(k, "b s (n d) -> b s n d", n=num_heads)
v = rearrange(v, "b s (n d) -> b s n d", n=num_heads)
x = flash_attn.flash_attn_func(q, k, v)
x = rearrange(x, "b s n d -> b s (n d)", n=num_heads)
elif SAGE_ATTN_AVAILABLE:
q = rearrange(q, "b s (n d) -> b n s d", n=num_heads)
k = rearrange(k, "b s (n d) -> b n s d", n=num_heads)
v = rearrange(v, "b s (n d) -> b n s d", n=num_heads)
x = sageattn(q, k, v)
x = rearrange(x, "b n s d -> b s (n d)", n=num_heads)
else:
q = rearrange(q, "b s (n d) -> b n s d", n=num_heads)
k = rearrange(k, "b s (n d) -> b n s d", n=num_heads)
v = rearrange(v, "b s (n d) -> b n s d", n=num_heads)
x = F.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "b n s d -> b s (n d)", n=num_heads)
return x
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor):
return (x * (1 + scale) + shift)
def sinusoidal_embedding_1d(dim, position):
sinusoid = torch.outer(position.type(torch.float64), torch.pow(
10000, -torch.arange(dim//2, dtype=torch.float64, device=position.device).div(dim//2)))
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
return x.to(position.dtype)
def precompute_freqs_cis_3d(dim: int, end: int = 1024, theta: float = 10000.0):
# 3d rope precompute
f_freqs_cis = precompute_freqs_cis(dim - 2 * (dim // 3), end, theta)
h_freqs_cis = precompute_freqs_cis(dim // 3, end, theta)
w_freqs_cis = precompute_freqs_cis(dim // 3, end, theta)
return f_freqs_cis, h_freqs_cis, w_freqs_cis
def precompute_freqs_cis(dim: int, end: int = 1024, theta: float = 10000.0):
# 1d rope precompute
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)
[: (dim // 2)].double() / dim))
freqs = torch.outer(torch.arange(end, device=freqs.device), freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis
def rope_apply(x, freqs, num_heads):
x = rearrange(x, "b s (n d) -> b s n d", n=num_heads)
x_out = torch.view_as_complex(x.to(torch.float64).reshape(
x.shape[0], x.shape[1], x.shape[2], -1, 2))
x_out = torch.view_as_real(x_out * freqs).flatten(2)
return x_out.to(x.dtype)
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
def forward(self, x):
dtype = x.dtype
return self.norm(x.float()).to(dtype) * self.weight
class AttentionModule(nn.Module):
def __init__(self, num_heads):
super().__init__()
self.num_heads = num_heads
def forward(self, q, k, v):
x = flash_attention(q=q, k=k, v=v, num_heads=self.num_heads)
return x
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int, eps: float = 1e-6):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.o = nn.Linear(dim, dim)
self.norm_q = RMSNorm(dim, eps=eps)
self.norm_k = RMSNorm(dim, eps=eps)
self.attn = AttentionModule(self.num_heads)
def forward(self, x, freqs):
q = self.norm_q(self.q(x))
k = self.norm_k(self.k(x))
v = self.v(x)
q = rope_apply(q, freqs, self.num_heads)
k = rope_apply(k, freqs, self.num_heads)
x = self.attn(q, k, v)
return self.o(x)
class CrossAttention(nn.Module):
def __init__(self, dim: int, num_heads: int, eps: float = 1e-6, has_image_input: bool = False):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.o = nn.Linear(dim, dim)
self.norm_q = RMSNorm(dim, eps=eps)
self.norm_k = RMSNorm(dim, eps=eps)
self.has_image_input = has_image_input
if has_image_input:
self.k_img = nn.Linear(dim, dim)
self.v_img = nn.Linear(dim, dim)
self.norm_k_img = RMSNorm(dim, eps=eps)
self.attn = AttentionModule(self.num_heads)
def forward(self, x: torch.Tensor, y: torch.Tensor):
if self.has_image_input:
img = y[:, :257]
ctx = y[:, 257:]
else:
ctx = y
q = self.norm_q(self.q(x))
k = self.norm_k(self.k(ctx))
v = self.v(ctx)
x = self.attn(q, k, v)
if self.has_image_input:
k_img = self.norm_k_img(self.k_img(img))
v_img = self.v_img(img)
y = flash_attention(q, k_img, v_img, num_heads=self.num_heads)
x = x + y
return self.o(x)
class DiTBlock(nn.Module):
def __init__(self, has_image_input: bool, dim: int, num_heads: int, ffn_dim: int, eps: float = 1e-6):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.ffn_dim = ffn_dim
self.self_attn = SelfAttention(dim, num_heads, eps)
self.cross_attn = CrossAttention(
dim, num_heads, eps, has_image_input=has_image_input)
self.norm1 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False)
self.norm2 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False)
self.norm3 = nn.LayerNorm(dim, eps=eps)
self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU(
approximate='tanh'), nn.Linear(ffn_dim, dim))
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
def forward(self, x, context, cam_emb, t_mod, freqs):
# msa: multi-head self-attention mlp: multi-layer perceptron
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod).chunk(6, dim=1)
input_x = modulate(self.norm1(x), shift_msa, scale_msa)
# encode camera
cam_emb = self.cam_encoder(cam_emb)
cam_emb = cam_emb.repeat(1, 2, 1)
cam_emb = cam_emb.unsqueeze(2).unsqueeze(3).repeat(1, 1, 30, 52, 1)
cam_emb = rearrange(cam_emb, 'b f h w d -> b (f h w) d')
input_x = input_x + cam_emb
x = x + gate_msa * self.projector(self.self_attn(input_x, freqs))
x = x + self.cross_attn(self.norm3(x), context)
input_x = modulate(self.norm2(x), shift_mlp, scale_mlp)
x = x + gate_mlp * self.ffn(input_x)
return x
class MLP(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.proj = torch.nn.Sequential(
nn.LayerNorm(in_dim),
nn.Linear(in_dim, in_dim),
nn.GELU(),
nn.Linear(in_dim, out_dim),
nn.LayerNorm(out_dim)
)
def forward(self, x):
return self.proj(x)
class Head(nn.Module):
def __init__(self, dim: int, out_dim: int, patch_size: Tuple[int, int, int], eps: float):
super().__init__()
self.dim = dim
self.patch_size = patch_size
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=False)
self.head = nn.Linear(dim, out_dim * math.prod(patch_size))
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
def forward(self, x, t_mod):
shift, scale = (self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod).chunk(2, dim=1)
x = (self.head(self.norm(x) * (1 + scale) + shift))
return x
class WanModel(torch.nn.Module):
def __init__(
self,
dim: int,
in_dim: int,
ffn_dim: int,
out_dim: int,
text_dim: int,
freq_dim: int,
eps: float,
patch_size: Tuple[int, int, int],
num_heads: int,
num_layers: int,
has_image_input: bool,
):
super().__init__()
self.dim = dim
self.freq_dim = freq_dim
self.has_image_input = has_image_input
self.patch_size = patch_size
self.patch_embedding = nn.Conv3d(
in_dim, dim, kernel_size=patch_size, stride=patch_size)
self.text_embedding = nn.Sequential(
nn.Linear(text_dim, dim),
nn.GELU(approximate='tanh'),
nn.Linear(dim, dim)
)
self.time_embedding = nn.Sequential(
nn.Linear(freq_dim, dim),
nn.SiLU(),
nn.Linear(dim, dim)
)
self.time_projection = nn.Sequential(
nn.SiLU(), nn.Linear(dim, dim * 6))
self.blocks = nn.ModuleList([
DiTBlock(has_image_input, dim, num_heads, ffn_dim, eps)
for _ in range(num_layers)
])
self.head = Head(dim, out_dim, patch_size, eps)
head_dim = dim // num_heads
self.freqs = precompute_freqs_cis_3d(head_dim)
if has_image_input:
self.img_emb = MLP(1280, dim) # clip_feature_dim = 1280
def patchify(self, x: torch.Tensor):
x = self.patch_embedding(x)
grid_size = x.shape[2:]
x = rearrange(x, 'b c f h w -> b (f h w) c').contiguous()
return x, grid_size # x, grid_size: (f, h, w)
def unpatchify(self, x: torch.Tensor, grid_size: torch.Tensor):
return rearrange(
x, 'b (f h w) (x y z c) -> b c (f x) (h y) (w z)',
f=grid_size[0], h=grid_size[1], w=grid_size[2],
x=self.patch_size[0], y=self.patch_size[1], z=self.patch_size[2]
)
def forward(self,
x: torch.Tensor,
timestep: torch.Tensor,
cam_emb: torch.Tensor,
context: torch.Tensor,
clip_feature: Optional[torch.Tensor] = None,
y: Optional[torch.Tensor] = None,
use_gradient_checkpointing: bool = False,
use_gradient_checkpointing_offload: bool = False,
**kwargs,
):
t = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, timestep))
t_mod = self.time_projection(t).unflatten(1, (6, self.dim))
context = self.text_embedding(context)
if self.has_image_input:
x = torch.cat([x, y], dim=1) # (b, c_x + c_y, f, h, w)
clip_embdding = self.img_emb(clip_feature)
context = torch.cat([clip_embdding, context], dim=1)
x, (f, h, w) = self.patchify(x)
freqs = torch.cat([
self.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
self.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
self.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
], dim=-1).reshape(f * h * w, 1, -1).to(x.device)
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for block in self.blocks:
if self.training and use_gradient_checkpointing:
if use_gradient_checkpointing_offload:
with torch.autograd.graph.save_on_cpu():
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
x, context, cam_emb, t_mod, freqs,
use_reentrant=False,
)
else:
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
x, context, cam_emb, t_mod, freqs,
use_reentrant=False,
)
else:
x = block(x, context, cam_emb, t_mod, freqs)
x = self.head(x, t)
x = self.unpatchify(x, (f, h, w))
return x
@staticmethod
def state_dict_converter():
return WanModelStateDictConverter()
class WanModelStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
rename_dict = {
"blocks.0.attn1.norm_k.weight": "blocks.0.self_attn.norm_k.weight",
"blocks.0.attn1.norm_q.weight": "blocks.0.self_attn.norm_q.weight",
"blocks.0.attn1.to_k.bias": "blocks.0.self_attn.k.bias",
"blocks.0.attn1.to_k.weight": "blocks.0.self_attn.k.weight",
"blocks.0.attn1.to_out.0.bias": "blocks.0.self_attn.o.bias",
"blocks.0.attn1.to_out.0.weight": "blocks.0.self_attn.o.weight",
"blocks.0.attn1.to_q.bias": "blocks.0.self_attn.q.bias",
"blocks.0.attn1.to_q.weight": "blocks.0.self_attn.q.weight",
"blocks.0.attn1.to_v.bias": "blocks.0.self_attn.v.bias",
"blocks.0.attn1.to_v.weight": "blocks.0.self_attn.v.weight",
"blocks.0.attn2.norm_k.weight": "blocks.0.cross_attn.norm_k.weight",
"blocks.0.attn2.norm_q.weight": "blocks.0.cross_attn.norm_q.weight",
"blocks.0.attn2.to_k.bias": "blocks.0.cross_attn.k.bias",
"blocks.0.attn2.to_k.weight": "blocks.0.cross_attn.k.weight",
"blocks.0.attn2.to_out.0.bias": "blocks.0.cross_attn.o.bias",
"blocks.0.attn2.to_out.0.weight": "blocks.0.cross_attn.o.weight",
"blocks.0.attn2.to_q.bias": "blocks.0.cross_attn.q.bias",
"blocks.0.attn2.to_q.weight": "blocks.0.cross_attn.q.weight",
"blocks.0.attn2.to_v.bias": "blocks.0.cross_attn.v.bias",
"blocks.0.attn2.to_v.weight": "blocks.0.cross_attn.v.weight",
"blocks.0.ffn.net.0.proj.bias": "blocks.0.ffn.0.bias",
"blocks.0.ffn.net.0.proj.weight": "blocks.0.ffn.0.weight",
"blocks.0.ffn.net.2.bias": "blocks.0.ffn.2.bias",
"blocks.0.ffn.net.2.weight": "blocks.0.ffn.2.weight",
"blocks.0.norm2.bias": "blocks.0.norm3.bias",
"blocks.0.norm2.weight": "blocks.0.norm3.weight",
"blocks.0.scale_shift_table": "blocks.0.modulation",
"condition_embedder.text_embedder.linear_1.bias": "text_embedding.0.bias",
"condition_embedder.text_embedder.linear_1.weight": "text_embedding.0.weight",
"condition_embedder.text_embedder.linear_2.bias": "text_embedding.2.bias",
"condition_embedder.text_embedder.linear_2.weight": "text_embedding.2.weight",
"condition_embedder.time_embedder.linear_1.bias": "time_embedding.0.bias",
"condition_embedder.time_embedder.linear_1.weight": "time_embedding.0.weight",
"condition_embedder.time_embedder.linear_2.bias": "time_embedding.2.bias",
"condition_embedder.time_embedder.linear_2.weight": "time_embedding.2.weight",
"condition_embedder.time_proj.bias": "time_projection.1.bias",
"condition_embedder.time_proj.weight": "time_projection.1.weight",
"patch_embedding.bias": "patch_embedding.bias",
"patch_embedding.weight": "patch_embedding.weight",
"scale_shift_table": "head.modulation",
"proj_out.bias": "head.head.bias",
"proj_out.weight": "head.head.weight",
}
state_dict_ = {}
for name, param in state_dict.items():
if name in rename_dict:
state_dict_[rename_dict[name]] = param
else:
name_ = ".".join(name.split(".")[:1] + ["0"] + name.split(".")[2:])
if name_ in rename_dict:
name_ = rename_dict[name_]
name_ = ".".join(name_.split(".")[:1] + [name.split(".")[1]] + name_.split(".")[2:])
state_dict_[name_] = param
if hash_state_dict_keys(state_dict) == "cb104773c6c2cb6df4f9529ad5c60d0b":
config = {
"model_type": "t2v",
"patch_size": (1, 2, 2),
"text_len": 512,
"in_dim": 16,
"dim": 5120,
"ffn_dim": 13824,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 40,
"num_layers": 40,
"window_size": (-1, -1),
"qk_norm": True,
"cross_attn_norm": True,
"eps": 1e-6,
}
else:
config = {}
return state_dict_, config
def from_civitai(self, state_dict):
if hash_state_dict_keys(state_dict) == "9269f8db9040a9d860eaca435be61814":
config = {
"has_image_input": False,
"patch_size": [1, 2, 2],
"in_dim": 16,
"dim": 1536,
"ffn_dim": 8960,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 12,
"num_layers": 30,
"eps": 1e-6
}
elif hash_state_dict_keys(state_dict) == "aafcfd9672c3a2456dc46e1cb6e52c70":
config = {
"has_image_input": False,
"patch_size": [1, 2, 2],
"in_dim": 16,
"dim": 5120,
"ffn_dim": 13824,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 40,
"num_layers": 40,
"eps": 1e-6
}
elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e":
config = {
"has_image_input": True,
"patch_size": [1, 2, 2],
"in_dim": 36,
"dim": 5120,
"ffn_dim": 13824,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 40,
"num_layers": 40,
"eps": 1e-6
}
else:
config = {}
return state_dict, config