jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
from typing import List, Optional
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModel
from safetensors.torch import load_file
import os
from typing import Union, List
from .config import MODEL_PATHS
class MLP(torch.nn.Module):
def __init__(self, input_size: int, xcol: str = "emb", ycol: str = "avg_rating"):
super().__init__()
self.input_size = input_size
self.xcol = xcol
self.ycol = ycol
self.layers = torch.nn.Sequential(
torch.nn.Linear(self.input_size, 1024),
#torch.nn.ReLU(),
torch.nn.Dropout(0.2),
torch.nn.Linear(1024, 128),
#torch.nn.ReLU(),
torch.nn.Dropout(0.2),
torch.nn.Linear(128, 64),
#torch.nn.ReLU(),
torch.nn.Dropout(0.1),
torch.nn.Linear(64, 16),
#torch.nn.ReLU(),
torch.nn.Linear(16, 1),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.layers(x)
def training_step(self, batch: dict, batch_idx: int) -> torch.Tensor:
x = batch[self.xcol]
y = batch[self.ycol].reshape(-1, 1)
x_hat = self.layers(x)
loss = torch.nn.functional.mse_loss(x_hat, y)
return loss
def validation_step(self, batch: dict, batch_idx: int) -> torch.Tensor:
x = batch[self.xcol]
y = batch[self.ycol].reshape(-1, 1)
x_hat = self.layers(x)
loss = torch.nn.functional.mse_loss(x_hat, y)
return loss
def configure_optimizers(self) -> torch.optim.Optimizer:
return torch.optim.Adam(self.parameters(), lr=1e-3)
class AestheticScore(torch.nn.Module):
def __init__(self, device: torch.device, path: str = MODEL_PATHS):
super().__init__()
self.device = device
self.aes_model_path = path.get("aesthetic_predictor")
# Load the MLP model
self.model = MLP(768)
try:
if self.aes_model_path.endswith(".safetensors"):
state_dict = load_file(self.aes_model_path)
else:
state_dict = torch.load(self.aes_model_path)
self.model.load_state_dict(state_dict)
except Exception as e:
raise ValueError(f"Error loading model weights from {self.aes_model_path}: {e}")
self.model.to(device)
self.model.eval()
# Load the CLIP model and processor
clip_model_name = path.get('clip-large')
self.model2 = AutoModel.from_pretrained(clip_model_name).eval().to(device)
self.processor = AutoProcessor.from_pretrained(clip_model_name)
def _calculate_score(self, image: torch.Tensor) -> float:
"""Calculate the aesthetic score for a single image.
Args:
image (torch.Tensor): The processed image tensor.
Returns:
float: The aesthetic score.
"""
with torch.no_grad():
# Get image embeddings
image_embs = self.model2.get_image_features(image)
image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True)
# Compute score
score = self.model(image_embs).cpu().flatten().item()
return score
@torch.no_grad()
def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str = "") -> List[float]:
"""Score the images based on their aesthetic quality.
Args:
images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s).
Returns:
List[float]: List of scores for the images.
"""
try:
if isinstance(images, (str, Image.Image)):
# Single image
if isinstance(images, str):
pil_image = Image.open(images)
else:
pil_image = images
# Prepare image inputs
image_inputs = self.processor(
images=pil_image,
padding=True,
truncation=True,
max_length=77,
return_tensors="pt",
).to(self.device)
return [self._calculate_score(image_inputs["pixel_values"])]
elif isinstance(images, list):
# Multiple images
scores = []
for one_image in images:
if isinstance(one_image, str):
pil_image = Image.open(one_image)
elif isinstance(one_image, Image.Image):
pil_image = one_image
else:
raise TypeError("The type of parameter images is illegal.")
# Prepare image inputs
image_inputs = self.processor(
images=pil_image,
padding=True,
truncation=True,
max_length=77,
return_tensors="pt",
).to(self.device)
scores.append(self._calculate_score(image_inputs["pixel_values"]))
return scores
else:
raise TypeError("The type of parameter images is illegal.")
except Exception as e:
raise RuntimeError(f"Error in scoring images: {e}")