Spaces:
Running
on
L40S
Running
on
L40S
from typing import List, Union | |
from PIL import Image | |
import torch | |
from .open_clip import create_model_and_transforms, get_tokenizer | |
from .config import MODEL_PATHS | |
class CLIPScore(torch.nn.Module): | |
def __init__(self, device: torch.device, path: str = MODEL_PATHS): | |
super().__init__() | |
"""Initialize the CLIPScore with a model and tokenizer. | |
Args: | |
device (torch.device): The device to load the model on. | |
""" | |
self.device = device | |
# Create model and transforms | |
self.model, _, self.preprocess_val = create_model_and_transforms( | |
"ViT-H-14", | |
# "laion2B-s32B-b79K", | |
pretrained=path.get("open_clip"), | |
precision="amp", | |
device=device, | |
jit=False, | |
force_quick_gelu=False, | |
force_custom_text=False, | |
force_patch_dropout=False, | |
force_image_size=None, | |
pretrained_image=False, | |
image_mean=None, | |
image_std=None, | |
light_augmentation=True, | |
aug_cfg={}, | |
output_dict=True, | |
with_score_predictor=False, | |
with_region_predictor=False, | |
) | |
# Initialize tokenizer | |
self.tokenizer = get_tokenizer("ViT-H-14", path["open_clip_bpe"]) | |
self.model = self.model.to(device) | |
self.model.eval() | |
def _calculate_score(self, image: torch.Tensor, prompt: str) -> float: | |
"""Calculate the CLIP score for a single image and prompt. | |
Args: | |
image (torch.Tensor): The processed image tensor. | |
prompt (str): The prompt text. | |
Returns: | |
float: The CLIP score. | |
""" | |
with torch.no_grad(): | |
# Process the prompt | |
text = self.tokenizer([prompt]).to(device=self.device, non_blocking=True) | |
# Calculate the CLIP score | |
outputs = self.model(image, text) | |
image_features, text_features = outputs["image_features"], outputs["text_features"] | |
logits_per_image = image_features @ text_features.T | |
clip_score = torch.diagonal(logits_per_image).cpu().numpy() | |
return clip_score[0].item() | |
def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str) -> List[float]: | |
"""Score the images based on the prompt. | |
Args: | |
images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s). | |
prompt (str): The prompt text. | |
Returns: | |
List[float]: List of CLIP scores for the images. | |
""" | |
if isinstance(images, (str, Image.Image)): | |
# Single image | |
if isinstance(images, str): | |
image = self.preprocess_val(Image.open(images)).unsqueeze(0).to(device=self.device, non_blocking=True) | |
else: | |
image = self.preprocess_val(images).unsqueeze(0).to(device=self.device, non_blocking=True) | |
return [self._calculate_score(image, prompt)] | |
elif isinstance(images, list): | |
# Multiple images | |
scores = [] | |
for one_images in images: | |
if isinstance(one_images, str): | |
image = self.preprocess_val(Image.open(one_images)).unsqueeze(0).to(device=self.device, non_blocking=True) | |
elif isinstance(one_images, Image.Image): | |
image = self.preprocess_val(one_images).unsqueeze(0).to(device=self.device, non_blocking=True) | |
else: | |
raise TypeError("The type of parameter images is illegal.") | |
scores.append(self._calculate_score(image, prompt)) | |
return scores | |
else: | |
raise TypeError("The type of parameter images is illegal.") | |