Spaces:
Running
on
L40S
Running
on
L40S
from dataclasses import dataclass | |
from transformers import CLIPModel as HFCLIPModel | |
from transformers import AutoTokenizer | |
from torch import nn, einsum | |
from .base_model import BaseModelConfig | |
from transformers import CLIPConfig | |
from typing import Any, Optional, Tuple, Union | |
import torch | |
from .cross_modeling import Cross_model | |
import json, os | |
class XCLIPModel(HFCLIPModel): | |
def __init__(self, config: CLIPConfig): | |
super().__init__(config) | |
def get_text_features( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.FloatTensor: | |
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components. | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
text_outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# pooled_output = text_outputs[1] | |
# text_features = self.text_projection(pooled_output) | |
last_hidden_state = text_outputs[0] | |
text_features = self.text_projection(last_hidden_state) | |
pooled_output = text_outputs[1] | |
text_features_EOS = self.text_projection(pooled_output) | |
# del last_hidden_state, text_outputs | |
# gc.collect() | |
return text_features, text_features_EOS | |
def get_image_features( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.FloatTensor: | |
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components. | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
vision_outputs = self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# pooled_output = vision_outputs[1] # pooled_output | |
# image_features = self.visual_projection(pooled_output) | |
last_hidden_state = vision_outputs[0] | |
image_features = self.visual_projection(last_hidden_state) | |
return image_features | |
class ClipModelConfig(BaseModelConfig): | |
_target_: str = "diffsynth.extensions.QualityMetric.trainer.models.clip_model.CLIPModel" | |
pretrained_model_name_or_path: str ="checkpoints/clip-vit-base-patch32" | |
class CLIPModel(nn.Module): | |
def __init__(self, ckpt, config_file=False): | |
super().__init__() | |
if config_file is None: | |
self.model = XCLIPModel.from_pretrained(ckpt) | |
else: | |
with open(os.path.join(ckpt, "config.json"), "r", encoding="utf-8") as f: | |
config = json.load(f) | |
config = CLIPConfig(**config) | |
self.model = XCLIPModel._from_config(config) | |
self.cross_model = Cross_model(dim=1024, layer_num=4, heads=16) | |
def get_text_features(self, *args, **kwargs): | |
return self.model.get_text_features(*args, **kwargs) | |
def get_image_features(self, *args, **kwargs): | |
return self.model.get_image_features(*args, **kwargs) | |
def forward(self, text_inputs=None, image_inputs=None, condition_inputs=None): | |
outputs = () | |
text_f, text_EOS = self.model.get_text_features(text_inputs) # B*77*1024 | |
outputs += text_EOS, | |
image_f = self.model.get_image_features(image_inputs.half()) # 2B*257*1024 | |
condition_f, _ = self.model.get_text_features(condition_inputs) # B*5*1024 | |
sim_text_condition = einsum('b i d, b j d -> b j i', text_f, condition_f) | |
sim_text_condition = torch.max(sim_text_condition, dim=1, keepdim=True)[0] | |
sim_text_condition = sim_text_condition / sim_text_condition.max() | |
mask = torch.where(sim_text_condition > 0.01, 0, float('-inf')) # B*1*77 | |
mask = mask.repeat(1,image_f.shape[1],1) # B*257*77 | |
bc = int(image_f.shape[0]/2) | |
sim0 = self.cross_model(image_f[:bc,:,:], text_f,mask.half()) | |
sim1 = self.cross_model(image_f[bc:,:,:], text_f,mask.half()) | |
outputs += sim0[:,0,:], | |
outputs += sim1[:,0,:], | |
return outputs | |
def logit_scale(self): | |
return self.model.logit_scale | |
def save(self, path): | |
self.model.save_pretrained(path) | |