jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
from dataclasses import dataclass
from transformers import CLIPModel as HFCLIPModel
from transformers import AutoTokenizer
from torch import nn, einsum
from .base_model import BaseModelConfig
from transformers import CLIPConfig
from typing import Any, Optional, Tuple, Union
import torch
from .cross_modeling import Cross_model
import json, os
class XCLIPModel(HFCLIPModel):
def __init__(self, config: CLIPConfig):
super().__init__(config)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# pooled_output = text_outputs[1]
# text_features = self.text_projection(pooled_output)
last_hidden_state = text_outputs[0]
text_features = self.text_projection(last_hidden_state)
pooled_output = text_outputs[1]
text_features_EOS = self.text_projection(pooled_output)
# del last_hidden_state, text_outputs
# gc.collect()
return text_features, text_features_EOS
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# pooled_output = vision_outputs[1] # pooled_output
# image_features = self.visual_projection(pooled_output)
last_hidden_state = vision_outputs[0]
image_features = self.visual_projection(last_hidden_state)
return image_features
@dataclass
class ClipModelConfig(BaseModelConfig):
_target_: str = "diffsynth.extensions.QualityMetric.trainer.models.clip_model.CLIPModel"
pretrained_model_name_or_path: str ="checkpoints/clip-vit-base-patch32"
class CLIPModel(nn.Module):
def __init__(self, ckpt, config_file=False):
super().__init__()
if config_file is None:
self.model = XCLIPModel.from_pretrained(ckpt)
else:
with open(os.path.join(ckpt, "config.json"), "r", encoding="utf-8") as f:
config = json.load(f)
config = CLIPConfig(**config)
self.model = XCLIPModel._from_config(config)
self.cross_model = Cross_model(dim=1024, layer_num=4, heads=16)
def get_text_features(self, *args, **kwargs):
return self.model.get_text_features(*args, **kwargs)
def get_image_features(self, *args, **kwargs):
return self.model.get_image_features(*args, **kwargs)
def forward(self, text_inputs=None, image_inputs=None, condition_inputs=None):
outputs = ()
text_f, text_EOS = self.model.get_text_features(text_inputs) # B*77*1024
outputs += text_EOS,
image_f = self.model.get_image_features(image_inputs.half()) # 2B*257*1024
condition_f, _ = self.model.get_text_features(condition_inputs) # B*5*1024
sim_text_condition = einsum('b i d, b j d -> b j i', text_f, condition_f)
sim_text_condition = torch.max(sim_text_condition, dim=1, keepdim=True)[0]
sim_text_condition = sim_text_condition / sim_text_condition.max()
mask = torch.where(sim_text_condition > 0.01, 0, float('-inf')) # B*1*77
mask = mask.repeat(1,image_f.shape[1],1) # B*257*77
bc = int(image_f.shape[0]/2)
sim0 = self.cross_model(image_f[:bc,:,:], text_f,mask.half())
sim1 = self.cross_model(image_f[bc:,:,:], text_f,mask.half())
outputs += sim0[:,0,:],
outputs += sim1[:,0,:],
return outputs
@property
def logit_scale(self):
return self.model.logit_scale
def save(self, path):
self.model.save_pretrained(path)