Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
from torch import einsum, nn | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
# helper functions | |
def exists(val): | |
return val is not None | |
def default(val, d): | |
return val if exists(val) else d | |
# normalization | |
# they use layernorm without bias, something that pytorch does not offer | |
class LayerNorm(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(dim)) | |
self.register_buffer("bias", torch.zeros(dim)) | |
def forward(self, x): | |
return F.layer_norm(x, x.shape[-1:], self.weight, self.bias) | |
# residual | |
class Residual(nn.Module): | |
def __init__(self, fn): | |
super().__init__() | |
self.fn = fn | |
def forward(self, x, *args, **kwargs): | |
return self.fn(x, *args, **kwargs) + x | |
# rotary positional embedding | |
# https://arxiv.org/abs/2104.09864 | |
class RotaryEmbedding(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
def forward(self, max_seq_len, *, device): | |
seq = torch.arange(max_seq_len, device=device, dtype=self.inv_freq.dtype) | |
freqs = einsum("i , j -> i j", seq, self.inv_freq) | |
return torch.cat((freqs, freqs), dim=-1) | |
def rotate_half(x): | |
x = rearrange(x, "... (j d) -> ... j d", j=2) | |
x1, x2 = x.unbind(dim=-2) | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(pos, t): | |
return (t * pos.cos()) + (rotate_half(t) * pos.sin()) | |
# classic Noam Shazeer paper, except here they use SwiGLU instead of the more popular GEGLU for gating the feedforward | |
# https://arxiv.org/abs/2002.05202 | |
class SwiGLU(nn.Module): | |
def forward(self, x): | |
x, gate = x.chunk(2, dim=-1) | |
return F.silu(gate) * x | |
# parallel attention and feedforward with residual | |
# discovered by Wang et al + EleutherAI from GPT-J fame | |
class ParallelTransformerBlock(nn.Module): | |
def __init__(self, dim, dim_head=64, heads=8, ff_mult=4): | |
super().__init__() | |
self.norm = LayerNorm(dim) | |
attn_inner_dim = dim_head * heads | |
ff_inner_dim = dim * ff_mult | |
self.fused_dims = (attn_inner_dim, dim_head, dim_head, (ff_inner_dim * 2)) | |
self.heads = heads | |
self.scale = dim_head**-0.5 | |
self.rotary_emb = RotaryEmbedding(dim_head) | |
self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False) | |
self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False) | |
self.ff_out = nn.Sequential( | |
SwiGLU(), | |
nn.Linear(ff_inner_dim, dim, bias=False) | |
) | |
self.register_buffer("pos_emb", None, persistent=False) | |
def get_rotary_embedding(self, n, device): | |
if self.pos_emb is not None and self.pos_emb.shape[-2] >= n: | |
return self.pos_emb[:n] | |
pos_emb = self.rotary_emb(n, device=device) | |
self.register_buffer("pos_emb", pos_emb, persistent=False) | |
return pos_emb | |
def forward(self, x, attn_mask=None): | |
""" | |
einstein notation | |
b - batch | |
h - heads | |
n, i, j - sequence length (base sequence length, source, target) | |
d - feature dimension | |
""" | |
n, device, h = x.shape[1], x.device, self.heads | |
# pre layernorm | |
x = self.norm(x) | |
# attention queries, keys, values, and feedforward inner | |
q, k, v, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1) | |
# split heads | |
# they use multi-query single-key-value attention, yet another Noam Shazeer paper | |
# they found no performance loss past a certain scale, and more efficient decoding obviously | |
# https://arxiv.org/abs/1911.02150 | |
q = rearrange(q, "b n (h d) -> b h n d", h=h) | |
# rotary embeddings | |
positions = self.get_rotary_embedding(n, device) | |
q, k = map(lambda t: apply_rotary_pos_emb(positions, t), (q, k)) | |
# scale | |
q = q * self.scale | |
# similarity | |
sim = einsum("b h i d, b j d -> b h i j", q, k) | |
# extra attention mask - for masking out attention from text CLS token to padding | |
if exists(attn_mask): | |
attn_mask = rearrange(attn_mask, 'b i j -> b 1 i j') | |
sim = sim.masked_fill(~attn_mask, -torch.finfo(sim.dtype).max) | |
# attention | |
sim = sim - sim.amax(dim=-1, keepdim=True).detach() | |
attn = sim.softmax(dim=-1) | |
# aggregate values | |
out = einsum("b h i j, b j d -> b h i d", attn, v) | |
# merge heads | |
out = rearrange(out, "b h n d -> b n (h d)") | |
return self.attn_out(out) + self.ff_out(ff) | |
# cross attention - using multi-query + one-headed key / values as in PaLM w/ optional parallel feedforward | |
class CrossAttention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
*, | |
context_dim=None, | |
dim_head=64, | |
heads=12, | |
parallel_ff=False, | |
ff_mult=4, | |
norm_context=False | |
): | |
super().__init__() | |
self.heads = heads | |
self.scale = dim_head ** -0.5 | |
inner_dim = heads * dim_head | |
context_dim = default(context_dim, dim) | |
self.norm = LayerNorm(dim) | |
self.context_norm = LayerNorm(context_dim) if norm_context else nn.Identity() | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_kv = nn.Linear(context_dim, dim_head * 2, bias=False) | |
self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
# whether to have parallel feedforward | |
ff_inner_dim = ff_mult * dim | |
self.ff = nn.Sequential( | |
nn.Linear(dim, ff_inner_dim * 2, bias=False), | |
SwiGLU(), | |
nn.Linear(ff_inner_dim, dim, bias=False) | |
) if parallel_ff else None | |
def forward(self, x, context, mask): | |
""" | |
einstein notation | |
b - batch | |
h - heads | |
n, i, j - sequence length (base sequence length, source, target) | |
d - feature dimension | |
""" | |
# pre-layernorm, for queries and context | |
x = self.norm(x) | |
context = self.context_norm(context) | |
# get queries | |
q = self.to_q(x) | |
q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads) | |
# scale | |
q = q * self.scale | |
# get key / values | |
k, v = self.to_kv(context).chunk(2, dim=-1) | |
# query / key similarity | |
sim = einsum('b h i d, b j d -> b h i j', q, k) | |
# attention | |
mask = mask.unsqueeze(1).repeat(1,self.heads,1,1) | |
sim = sim + mask # context mask | |
sim = sim - sim.amax(dim=-1, keepdim=True) | |
attn = sim.softmax(dim=-1) | |
# aggregate | |
out = einsum('b h i j, b j d -> b h i d', attn, v) | |
# merge and combine heads | |
out = rearrange(out, 'b h n d -> b n (h d)') | |
out = self.to_out(out) | |
# add parallel feedforward (for multimodal layers) | |
if exists(self.ff): | |
out = out + self.ff(x) | |
return out | |
class Cross_model(nn.Module): | |
def __init__( | |
self, | |
dim=512, | |
layer_num=4, | |
dim_head=64, | |
heads=8, | |
ff_mult=4 | |
): | |
super().__init__() | |
self.layers = nn.ModuleList([]) | |
for ind in range(layer_num): | |
self.layers.append(nn.ModuleList([ | |
Residual(CrossAttention(dim=dim, dim_head=dim_head, heads=heads, parallel_ff=True, ff_mult=ff_mult)), | |
Residual(ParallelTransformerBlock(dim=dim, dim_head=dim_head, heads=heads, ff_mult=ff_mult)) | |
])) | |
def forward( | |
self, | |
query_tokens, | |
context_tokens, | |
mask | |
): | |
for cross_attn, self_attn_ff in self.layers: | |
query_tokens = cross_attn(query_tokens, context_tokens,mask) | |
query_tokens = self_attn_ff(query_tokens) | |
return query_tokens | |