import torch, os, torchvision from torchvision import transforms import pandas as pd from PIL import Image class TextImageDataset(torch.utils.data.Dataset): def __init__(self, dataset_path, steps_per_epoch=10000, height=1024, width=1024, center_crop=True, random_flip=False): self.steps_per_epoch = steps_per_epoch metadata = pd.read_csv(os.path.join(dataset_path, "train/metadata.csv")) self.path = [os.path.join(dataset_path, "train", file_name) for file_name in metadata["file_name"]] self.text = metadata["text"].to_list() self.height = height self.width = width self.image_processor = transforms.Compose( [ transforms.CenterCrop((height, width)) if center_crop else transforms.RandomCrop((height, width)), transforms.RandomHorizontalFlip() if random_flip else transforms.Lambda(lambda x: x), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __getitem__(self, index): data_id = torch.randint(0, len(self.path), (1,))[0] data_id = (data_id + index) % len(self.path) # For fixed seed. text = self.text[data_id] image = Image.open(self.path[data_id]).convert("RGB") target_height, target_width = self.height, self.width width, height = image.size scale = max(target_width / width, target_height / height) shape = [round(height*scale),round(width*scale)] image = torchvision.transforms.functional.resize(image,shape,interpolation=transforms.InterpolationMode.BILINEAR) image = self.image_processor(image) return {"text": text, "image": image} def __len__(self): return self.steps_per_epoch