import torch from .sd3_dit import TimestepEmbeddings, RMSNorm from .utils import init_weights_on_device from einops import rearrange, repeat from tqdm import tqdm from typing import Union, Tuple, List from .utils import hash_state_dict_keys def HunyuanVideoRope(latents): def _to_tuple(x, dim=2): if isinstance(x, int): return (x,) * dim elif len(x) == dim: return x else: raise ValueError(f"Expected length {dim} or int, but got {x}") def get_meshgrid_nd(start, *args, dim=2): """ Get n-D meshgrid with start, stop and num. Args: start (int or tuple): If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop, step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. For n-dim, start/stop/num should be int or n-tuple. If n-tuple is provided, the meshgrid will be stacked following the dim order in n-tuples. *args: See above. dim (int): Dimension of the meshgrid. Defaults to 2. Returns: grid (np.ndarray): [dim, ...] """ if len(args) == 0: # start is grid_size num = _to_tuple(start, dim=dim) start = (0,) * dim stop = num elif len(args) == 1: # start is start, args[0] is stop, step is 1 start = _to_tuple(start, dim=dim) stop = _to_tuple(args[0], dim=dim) num = [stop[i] - start[i] for i in range(dim)] elif len(args) == 2: # start is start, args[0] is stop, args[1] is num start = _to_tuple(start, dim=dim) # Left-Top eg: 12,0 stop = _to_tuple(args[0], dim=dim) # Right-Bottom eg: 20,32 num = _to_tuple(args[1], dim=dim) # Target Size eg: 32,124 else: raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}") # PyTorch implement of np.linspace(start[i], stop[i], num[i], endpoint=False) axis_grid = [] for i in range(dim): a, b, n = start[i], stop[i], num[i] g = torch.linspace(a, b, n + 1, dtype=torch.float32)[:n] axis_grid.append(g) grid = torch.meshgrid(*axis_grid, indexing="ij") # dim x [W, H, D] grid = torch.stack(grid, dim=0) # [dim, W, H, D] return grid def get_1d_rotary_pos_embed( dim: int, pos: Union[torch.FloatTensor, int], theta: float = 10000.0, use_real: bool = False, theta_rescale_factor: float = 1.0, interpolation_factor: float = 1.0, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ Precompute the frequency tensor for complex exponential (cis) with given dimensions. (Note: `cis` means `cos + i * sin`, where i is the imaginary unit.) This function calculates a frequency tensor with complex exponential using the given dimension 'dim' and the end index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64 data type. Args: dim (int): Dimension of the frequency tensor. pos (int or torch.FloatTensor): Position indices for the frequency tensor. [S] or scalar theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0. use_real (bool, optional): If True, return real part and imaginary part separately. Otherwise, return complex numbers. theta_rescale_factor (float, optional): Rescale factor for theta. Defaults to 1.0. Returns: freqs_cis: Precomputed frequency tensor with complex exponential. [S, D/2] freqs_cos, freqs_sin: Precomputed frequency tensor with real and imaginary parts separately. [S, D] """ if isinstance(pos, int): pos = torch.arange(pos).float() # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning # has some connection to NTK literature if theta_rescale_factor != 1.0: theta *= theta_rescale_factor ** (dim / (dim - 2)) freqs = 1.0 / ( theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) ) # [D/2] # assert interpolation_factor == 1.0, f"interpolation_factor: {interpolation_factor}" freqs = torch.outer(pos * interpolation_factor, freqs) # [S, D/2] if use_real: freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D] freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D] return freqs_cos, freqs_sin else: freqs_cis = torch.polar( torch.ones_like(freqs), freqs ) # complex64 # [S, D/2] return freqs_cis def get_nd_rotary_pos_embed( rope_dim_list, start, *args, theta=10000.0, use_real=False, theta_rescale_factor: Union[float, List[float]] = 1.0, interpolation_factor: Union[float, List[float]] = 1.0, ): """ This is a n-d version of precompute_freqs_cis, which is a RoPE for tokens with n-d structure. Args: rope_dim_list (list of int): Dimension of each rope. len(rope_dim_list) should equal to n. sum(rope_dim_list) should equal to head_dim of attention layer. start (int | tuple of int | list of int): If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop, step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. *args: See above. theta (float): Scaling factor for frequency computation. Defaults to 10000.0. use_real (bool): If True, return real part and imaginary part separately. Otherwise, return complex numbers. Some libraries such as TensorRT does not support complex64 data type. So it is useful to provide a real part and an imaginary part separately. theta_rescale_factor (float): Rescale factor for theta. Defaults to 1.0. Returns: pos_embed (torch.Tensor): [HW, D/2] """ grid = get_meshgrid_nd( start, *args, dim=len(rope_dim_list) ) # [3, W, H, D] / [2, W, H] if isinstance(theta_rescale_factor, int) or isinstance(theta_rescale_factor, float): theta_rescale_factor = [theta_rescale_factor] * len(rope_dim_list) elif isinstance(theta_rescale_factor, list) and len(theta_rescale_factor) == 1: theta_rescale_factor = [theta_rescale_factor[0]] * len(rope_dim_list) assert len(theta_rescale_factor) == len( rope_dim_list ), "len(theta_rescale_factor) should equal to len(rope_dim_list)" if isinstance(interpolation_factor, int) or isinstance(interpolation_factor, float): interpolation_factor = [interpolation_factor] * len(rope_dim_list) elif isinstance(interpolation_factor, list) and len(interpolation_factor) == 1: interpolation_factor = [interpolation_factor[0]] * len(rope_dim_list) assert len(interpolation_factor) == len( rope_dim_list ), "len(interpolation_factor) should equal to len(rope_dim_list)" # use 1/ndim of dimensions to encode grid_axis embs = [] for i in range(len(rope_dim_list)): emb = get_1d_rotary_pos_embed( rope_dim_list[i], grid[i].reshape(-1), theta, use_real=use_real, theta_rescale_factor=theta_rescale_factor[i], interpolation_factor=interpolation_factor[i], ) # 2 x [WHD, rope_dim_list[i]] embs.append(emb) if use_real: cos = torch.cat([emb[0] for emb in embs], dim=1) # (WHD, D/2) sin = torch.cat([emb[1] for emb in embs], dim=1) # (WHD, D/2) return cos, sin else: emb = torch.cat(embs, dim=1) # (WHD, D/2) return emb freqs_cos, freqs_sin = get_nd_rotary_pos_embed( [16, 56, 56], [latents.shape[2], latents.shape[3] // 2, latents.shape[4] // 2], theta=256, use_real=True, theta_rescale_factor=1, ) return freqs_cos, freqs_sin class PatchEmbed(torch.nn.Module): def __init__(self, patch_size=(1, 2, 2), in_channels=16, embed_dim=3072): super().__init__() self.proj = torch.nn.Conv3d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): x = self.proj(x) x = x.flatten(2).transpose(1, 2) return x class IndividualTokenRefinerBlock(torch.nn.Module): def __init__(self, hidden_size=3072, num_heads=24): super().__init__() self.num_heads = num_heads self.norm1 = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) self.self_attn_qkv = torch.nn.Linear(hidden_size, hidden_size * 3) self.self_attn_proj = torch.nn.Linear(hidden_size, hidden_size) self.norm2 = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) self.mlp = torch.nn.Sequential( torch.nn.Linear(hidden_size, hidden_size * 4), torch.nn.SiLU(), torch.nn.Linear(hidden_size * 4, hidden_size) ) self.adaLN_modulation = torch.nn.Sequential( torch.nn.SiLU(), torch.nn.Linear(hidden_size, hidden_size * 2, device="cuda", dtype=torch.bfloat16), ) def forward(self, x, c, attn_mask=None): gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1) norm_x = self.norm1(x) qkv = self.self_attn_qkv(norm_x) q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) attn = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) attn = rearrange(attn, "B H L D -> B L (H D)") x = x + self.self_attn_proj(attn) * gate_msa.unsqueeze(1) x = x + self.mlp(self.norm2(x)) * gate_mlp.unsqueeze(1) return x class SingleTokenRefiner(torch.nn.Module): def __init__(self, in_channels=4096, hidden_size=3072, depth=2): super().__init__() self.input_embedder = torch.nn.Linear(in_channels, hidden_size, bias=True) self.t_embedder = TimestepEmbeddings(256, hidden_size, computation_device="cpu") self.c_embedder = torch.nn.Sequential( torch.nn.Linear(in_channels, hidden_size), torch.nn.SiLU(), torch.nn.Linear(hidden_size, hidden_size) ) self.blocks = torch.nn.ModuleList([IndividualTokenRefinerBlock(hidden_size=hidden_size) for _ in range(depth)]) def forward(self, x, t, mask=None): timestep_aware_representations = self.t_embedder(t, dtype=torch.float32) mask_float = mask.float().unsqueeze(-1) context_aware_representations = (x * mask_float).sum(dim=1) / mask_float.sum(dim=1) context_aware_representations = self.c_embedder(context_aware_representations) c = timestep_aware_representations + context_aware_representations x = self.input_embedder(x) mask = mask.to(device=x.device, dtype=torch.bool) mask = repeat(mask, "B L -> B 1 D L", D=mask.shape[-1]) mask = mask & mask.transpose(2, 3) mask[:, :, :, 0] = True for block in self.blocks: x = block(x, c, mask) return x class ModulateDiT(torch.nn.Module): def __init__(self, hidden_size, factor=6): super().__init__() self.act = torch.nn.SiLU() self.linear = torch.nn.Linear(hidden_size, factor * hidden_size) def forward(self, x): return self.linear(self.act(x)) def modulate(x, shift=None, scale=None, tr_shift=None, tr_scale=None, tr_token=None): if tr_shift is not None: x_zero = x[:, :tr_token] * (1 + tr_scale.unsqueeze(1)) + tr_shift.unsqueeze(1) x_orig = x[:, tr_token:] * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) x = torch.concat((x_zero, x_orig), dim=1) return x if scale is None and shift is None: return x elif shift is None: return x * (1 + scale.unsqueeze(1)) elif scale is None: return x + shift.unsqueeze(1) else: return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) def reshape_for_broadcast( freqs_cis, x: torch.Tensor, head_first=False, ): ndim = x.ndim assert 0 <= 1 < ndim if isinstance(freqs_cis, tuple): # freqs_cis: (cos, sin) in real space if head_first: assert freqs_cis[0].shape == ( x.shape[-2], x.shape[-1], ), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}" shape = [ d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape) ] else: assert freqs_cis[0].shape == ( x.shape[1], x.shape[-1], ), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}" shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape) else: # freqs_cis: values in complex space if head_first: assert freqs_cis.shape == ( x.shape[-2], x.shape[-1], ), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}" shape = [ d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape) ] else: assert freqs_cis.shape == ( x.shape[1], x.shape[-1], ), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}" shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return freqs_cis.view(*shape) def rotate_half(x): x_real, x_imag = ( x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1) ) # [B, S, H, D//2] return torch.stack([-x_imag, x_real], dim=-1).flatten(3) def apply_rotary_emb( xq: torch.Tensor, xk: torch.Tensor, freqs_cis, head_first: bool = False, ): xk_out = None if isinstance(freqs_cis, tuple): cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D] cos, sin = cos.to(xq.device), sin.to(xq.device) # real * cos - imag * sin # imag * cos + real * sin xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq) xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk) else: # view_as_complex will pack [..., D/2, 2](real) to [..., D/2](complex) xq_ = torch.view_as_complex( xq.float().reshape(*xq.shape[:-1], -1, 2) ) # [B, S, H, D//2] freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to( xq.device ) # [S, D//2] --> [1, S, 1, D//2] # (real, imag) * (cos, sin) = (real * cos - imag * sin, imag * cos + real * sin) # view_as_real will expand [..., D/2](complex) to [..., D/2, 2](real) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq) xk_ = torch.view_as_complex( xk.float().reshape(*xk.shape[:-1], -1, 2) ) # [B, S, H, D//2] xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk) return xq_out, xk_out def attention(q, k, v): q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) x = torch.nn.functional.scaled_dot_product_attention(q, k, v) x = x.transpose(1, 2).flatten(2, 3) return x def apply_gate(x, gate, tr_gate=None, tr_token=None): if tr_gate is not None: x_zero = x[:, :tr_token] * tr_gate.unsqueeze(1) x_orig = x[:, tr_token:] * gate.unsqueeze(1) return torch.concat((x_zero, x_orig), dim=1) else: return x * gate.unsqueeze(1) class MMDoubleStreamBlockComponent(torch.nn.Module): def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4): super().__init__() self.heads_num = heads_num self.mod = ModulateDiT(hidden_size) self.norm1 = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.to_qkv = torch.nn.Linear(hidden_size, hidden_size * 3) self.norm_q = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) self.norm_k = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) self.to_out = torch.nn.Linear(hidden_size, hidden_size) self.norm2 = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.ff = torch.nn.Sequential( torch.nn.Linear(hidden_size, hidden_size * mlp_width_ratio), torch.nn.GELU(approximate="tanh"), torch.nn.Linear(hidden_size * mlp_width_ratio, hidden_size) ) def forward(self, hidden_states, conditioning, freqs_cis=None, token_replace_vec=None, tr_token=None): mod1_shift, mod1_scale, mod1_gate, mod2_shift, mod2_scale, mod2_gate = self.mod(conditioning).chunk(6, dim=-1) if token_replace_vec is not None: assert tr_token is not None tr_mod1_shift, tr_mod1_scale, tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = self.mod(token_replace_vec).chunk(6, dim=-1) else: tr_mod1_shift, tr_mod1_scale, tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = None, None, None, None, None, None norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = modulate(norm_hidden_states, shift=mod1_shift, scale=mod1_scale, tr_shift=tr_mod1_shift, tr_scale=tr_mod1_scale, tr_token=tr_token) qkv = self.to_qkv(norm_hidden_states) q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) q = self.norm_q(q) k = self.norm_k(k) if freqs_cis is not None: q, k = apply_rotary_emb(q, k, freqs_cis, head_first=False) return (q, k, v), (mod1_gate, mod2_shift, mod2_scale, mod2_gate), (tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate) def process_ff(self, hidden_states, attn_output, mod, mod_tr=None, tr_token=None): mod1_gate, mod2_shift, mod2_scale, mod2_gate = mod if mod_tr is not None: tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = mod_tr else: tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = None, None, None, None hidden_states = hidden_states + apply_gate(self.to_out(attn_output), mod1_gate, tr_mod1_gate, tr_token) x = self.ff(modulate(self.norm2(hidden_states), shift=mod2_shift, scale=mod2_scale, tr_shift=tr_mod2_shift, tr_scale=tr_mod2_scale, tr_token=tr_token)) hidden_states = hidden_states + apply_gate(x, mod2_gate, tr_mod2_gate, tr_token) return hidden_states class MMDoubleStreamBlock(torch.nn.Module): def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4): super().__init__() self.component_a = MMDoubleStreamBlockComponent(hidden_size, heads_num, mlp_width_ratio) self.component_b = MMDoubleStreamBlockComponent(hidden_size, heads_num, mlp_width_ratio) def forward(self, hidden_states_a, hidden_states_b, conditioning, freqs_cis, token_replace_vec=None, tr_token=None, split_token=71): (q_a, k_a, v_a), mod_a, mod_tr = self.component_a(hidden_states_a, conditioning, freqs_cis, token_replace_vec, tr_token) (q_b, k_b, v_b), mod_b, _ = self.component_b(hidden_states_b, conditioning, freqs_cis=None) q_a, q_b = torch.concat([q_a, q_b[:, :split_token]], dim=1), q_b[:, split_token:].contiguous() k_a, k_b = torch.concat([k_a, k_b[:, :split_token]], dim=1), k_b[:, split_token:].contiguous() v_a, v_b = torch.concat([v_a, v_b[:, :split_token]], dim=1), v_b[:, split_token:].contiguous() attn_output_a = attention(q_a, k_a, v_a) attn_output_b = attention(q_b, k_b, v_b) attn_output_a, attn_output_b = attn_output_a[:, :-split_token].contiguous(), torch.concat([attn_output_a[:, -split_token:], attn_output_b], dim=1) hidden_states_a = self.component_a.process_ff(hidden_states_a, attn_output_a, mod_a, mod_tr, tr_token) hidden_states_b = self.component_b.process_ff(hidden_states_b, attn_output_b, mod_b) return hidden_states_a, hidden_states_b class MMSingleStreamBlockOriginal(torch.nn.Module): def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4): super().__init__() self.hidden_size = hidden_size self.heads_num = heads_num self.mlp_hidden_dim = hidden_size * mlp_width_ratio self.linear1 = torch.nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) self.linear2 = torch.nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) self.q_norm = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) self.k_norm = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) self.pre_norm = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.mlp_act = torch.nn.GELU(approximate="tanh") self.modulation = ModulateDiT(hidden_size, factor=3) def forward(self, x, vec, freqs_cis=None, txt_len=256): mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1) x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale) qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) q = self.q_norm(q) k = self.k_norm(k) q_a, q_b = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :] k_a, k_b = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :] q_a, k_a = apply_rotary_emb(q_a, k_a, freqs_cis, head_first=False) q = torch.cat((q_a, q_b), dim=1) k = torch.cat((k_a, k_b), dim=1) attn_output_a = attention(q[:, :-185].contiguous(), k[:, :-185].contiguous(), v[:, :-185].contiguous()) attn_output_b = attention(q[:, -185:].contiguous(), k[:, -185:].contiguous(), v[:, -185:].contiguous()) attn_output = torch.concat([attn_output_a, attn_output_b], dim=1) output = self.linear2(torch.cat((attn_output, self.mlp_act(mlp)), 2)) return x + output * mod_gate.unsqueeze(1) class MMSingleStreamBlock(torch.nn.Module): def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4): super().__init__() self.heads_num = heads_num self.mod = ModulateDiT(hidden_size, factor=3) self.norm = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.to_qkv = torch.nn.Linear(hidden_size, hidden_size * 3) self.norm_q = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) self.norm_k = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) self.to_out = torch.nn.Linear(hidden_size, hidden_size) self.ff = torch.nn.Sequential( torch.nn.Linear(hidden_size, hidden_size * mlp_width_ratio), torch.nn.GELU(approximate="tanh"), torch.nn.Linear(hidden_size * mlp_width_ratio, hidden_size, bias=False) ) def forward(self, hidden_states, conditioning, freqs_cis=None, txt_len=256, token_replace_vec=None, tr_token=None, split_token=71): mod_shift, mod_scale, mod_gate = self.mod(conditioning).chunk(3, dim=-1) if token_replace_vec is not None: assert tr_token is not None tr_mod_shift, tr_mod_scale, tr_mod_gate = self.mod(token_replace_vec).chunk(3, dim=-1) else: tr_mod_shift, tr_mod_scale, tr_mod_gate = None, None, None norm_hidden_states = self.norm(hidden_states) norm_hidden_states = modulate(norm_hidden_states, shift=mod_shift, scale=mod_scale, tr_shift=tr_mod_shift, tr_scale=tr_mod_scale, tr_token=tr_token) qkv = self.to_qkv(norm_hidden_states) q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) q = self.norm_q(q) k = self.norm_k(k) q_a, q_b = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :] k_a, k_b = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :] q_a, k_a = apply_rotary_emb(q_a, k_a, freqs_cis, head_first=False) v_len = txt_len - split_token q_a, q_b = torch.concat([q_a, q_b[:, :split_token]], dim=1), q_b[:, split_token:].contiguous() k_a, k_b = torch.concat([k_a, k_b[:, :split_token]], dim=1), k_b[:, split_token:].contiguous() v_a, v_b = v[:, :-v_len].contiguous(), v[:, -v_len:].contiguous() attn_output_a = attention(q_a, k_a, v_a) attn_output_b = attention(q_b, k_b, v_b) attn_output = torch.concat([attn_output_a, attn_output_b], dim=1) hidden_states = hidden_states + apply_gate(self.to_out(attn_output), mod_gate, tr_mod_gate, tr_token) hidden_states = hidden_states + apply_gate(self.ff(norm_hidden_states), mod_gate, tr_mod_gate, tr_token) return hidden_states class FinalLayer(torch.nn.Module): def __init__(self, hidden_size=3072, patch_size=(1, 2, 2), out_channels=16): super().__init__() self.norm_final = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = torch.nn.Linear(hidden_size, patch_size[0] * patch_size[1] * patch_size[2] * out_channels) self.adaLN_modulation = torch.nn.Sequential(torch.nn.SiLU(), torch.nn.Linear(hidden_size, 2 * hidden_size)) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift=shift, scale=scale) x = self.linear(x) return x class HunyuanVideoDiT(torch.nn.Module): def __init__(self, in_channels=16, hidden_size=3072, text_dim=4096, num_double_blocks=20, num_single_blocks=40, guidance_embed=True): super().__init__() self.img_in = PatchEmbed(in_channels=in_channels, embed_dim=hidden_size) self.txt_in = SingleTokenRefiner(in_channels=text_dim, hidden_size=hidden_size) self.time_in = TimestepEmbeddings(256, hidden_size, computation_device="cpu") self.vector_in = torch.nn.Sequential( torch.nn.Linear(768, hidden_size), torch.nn.SiLU(), torch.nn.Linear(hidden_size, hidden_size) ) self.guidance_in = TimestepEmbeddings(256, hidden_size, computation_device="cpu") if guidance_embed else None self.double_blocks = torch.nn.ModuleList([MMDoubleStreamBlock(hidden_size) for _ in range(num_double_blocks)]) self.single_blocks = torch.nn.ModuleList([MMSingleStreamBlock(hidden_size) for _ in range(num_single_blocks)]) self.final_layer = FinalLayer(hidden_size) # TODO: remove these parameters self.dtype = torch.bfloat16 self.patch_size = [1, 2, 2] self.hidden_size = 3072 self.heads_num = 24 self.rope_dim_list = [16, 56, 56] def unpatchify(self, x, T, H, W): x = rearrange(x, "B (T H W) (C pT pH pW) -> B C (T pT) (H pH) (W pW)", H=H, W=W, pT=1, pH=2, pW=2) return x def enable_block_wise_offload(self, warm_device="cuda", cold_device="cpu"): self.warm_device = warm_device self.cold_device = cold_device self.to(self.cold_device) def load_models_to_device(self, loadmodel_names=[], device="cpu"): for model_name in loadmodel_names: model = getattr(self, model_name) if model is not None: model.to(device) torch.cuda.empty_cache() def prepare_freqs(self, latents): return HunyuanVideoRope(latents) def forward( self, x: torch.Tensor, t: torch.Tensor, prompt_emb: torch.Tensor = None, text_mask: torch.Tensor = None, pooled_prompt_emb: torch.Tensor = None, freqs_cos: torch.Tensor = None, freqs_sin: torch.Tensor = None, guidance: torch.Tensor = None, **kwargs ): B, C, T, H, W = x.shape vec = self.time_in(t, dtype=torch.float32) + self.vector_in(pooled_prompt_emb) if self.guidance_in is not None: vec += self.guidance_in(guidance * 1000, dtype=torch.float32) img = self.img_in(x) txt = self.txt_in(prompt_emb, t, text_mask) for block in tqdm(self.double_blocks, desc="Double stream blocks"): img, txt = block(img, txt, vec, (freqs_cos, freqs_sin)) x = torch.concat([img, txt], dim=1) for block in tqdm(self.single_blocks, desc="Single stream blocks"): x = block(x, vec, (freqs_cos, freqs_sin)) img = x[:, :-256] img = self.final_layer(img, vec) img = self.unpatchify(img, T=T//1, H=H//2, W=W//2) return img def enable_auto_offload(self, dtype=torch.bfloat16, device="cuda"): def cast_to(weight, dtype=None, device=None, copy=False): if device is None or weight.device == device: if not copy: if dtype is None or weight.dtype == dtype: return weight return weight.to(dtype=dtype, copy=copy) r = torch.empty_like(weight, dtype=dtype, device=device) r.copy_(weight) return r def cast_weight(s, input=None, dtype=None, device=None): if input is not None: if dtype is None: dtype = input.dtype if device is None: device = input.device weight = cast_to(s.weight, dtype, device) return weight def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None): if input is not None: if dtype is None: dtype = input.dtype if bias_dtype is None: bias_dtype = dtype if device is None: device = input.device weight = cast_to(s.weight, dtype, device) bias = cast_to(s.bias, bias_dtype, device) if s.bias is not None else None return weight, bias class quantized_layer: class Linear(torch.nn.Linear): def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs): super().__init__(*args, **kwargs) self.dtype = dtype self.device = device def block_forward_(self, x, i, j, dtype, device): weight_ = cast_to( self.weight[j * self.block_size: (j + 1) * self.block_size, i * self.block_size: (i + 1) * self.block_size], dtype=dtype, device=device ) if self.bias is None or i > 0: bias_ = None else: bias_ = cast_to(self.bias[j * self.block_size: (j + 1) * self.block_size], dtype=dtype, device=device) x_ = x[..., i * self.block_size: (i + 1) * self.block_size] y_ = torch.nn.functional.linear(x_, weight_, bias_) del x_, weight_, bias_ torch.cuda.empty_cache() return y_ def block_forward(self, x, **kwargs): # This feature can only reduce 2GB VRAM, so we disable it. y = torch.zeros(x.shape[:-1] + (self.out_features,), dtype=x.dtype, device=x.device) for i in range((self.in_features + self.block_size - 1) // self.block_size): for j in range((self.out_features + self.block_size - 1) // self.block_size): y[..., j * self.block_size: (j + 1) * self.block_size] += self.block_forward_(x, i, j, dtype=x.dtype, device=x.device) return y def forward(self, x, **kwargs): weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device) return torch.nn.functional.linear(x, weight, bias) class RMSNorm(torch.nn.Module): def __init__(self, module, dtype=torch.bfloat16, device="cuda"): super().__init__() self.module = module self.dtype = dtype self.device = device def forward(self, hidden_states, **kwargs): input_dtype = hidden_states.dtype variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps) hidden_states = hidden_states.to(input_dtype) if self.module.weight is not None: weight = cast_weight(self.module, hidden_states, dtype=torch.bfloat16, device="cuda") hidden_states = hidden_states * weight return hidden_states class Conv3d(torch.nn.Conv3d): def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs): super().__init__(*args, **kwargs) self.dtype = dtype self.device = device def forward(self, x): weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device) return torch.nn.functional.conv3d(x, weight, bias, self.stride, self.padding, self.dilation, self.groups) class LayerNorm(torch.nn.LayerNorm): def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs): super().__init__(*args, **kwargs) self.dtype = dtype self.device = device def forward(self, x): if self.weight is not None and self.bias is not None: weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device) return torch.nn.functional.layer_norm(x, self.normalized_shape, weight, bias, self.eps) else: return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) def replace_layer(model, dtype=torch.bfloat16, device="cuda"): for name, module in model.named_children(): if isinstance(module, torch.nn.Linear): with init_weights_on_device(): new_layer = quantized_layer.Linear( module.in_features, module.out_features, bias=module.bias is not None, dtype=dtype, device=device ) new_layer.load_state_dict(module.state_dict(), assign=True) setattr(model, name, new_layer) elif isinstance(module, torch.nn.Conv3d): with init_weights_on_device(): new_layer = quantized_layer.Conv3d( module.in_channels, module.out_channels, kernel_size=module.kernel_size, stride=module.stride, dtype=dtype, device=device ) new_layer.load_state_dict(module.state_dict(), assign=True) setattr(model, name, new_layer) elif isinstance(module, RMSNorm): new_layer = quantized_layer.RMSNorm( module, dtype=dtype, device=device ) setattr(model, name, new_layer) elif isinstance(module, torch.nn.LayerNorm): with init_weights_on_device(): new_layer = quantized_layer.LayerNorm( module.normalized_shape, elementwise_affine=module.elementwise_affine, eps=module.eps, dtype=dtype, device=device ) new_layer.load_state_dict(module.state_dict(), assign=True) setattr(model, name, new_layer) else: replace_layer(module, dtype=dtype, device=device) replace_layer(self, dtype=dtype, device=device) @staticmethod def state_dict_converter(): return HunyuanVideoDiTStateDictConverter() class HunyuanVideoDiTStateDictConverter: def __init__(self): pass def from_civitai(self, state_dict): origin_hash_key = hash_state_dict_keys(state_dict, with_shape=True) if "module" in state_dict: state_dict = state_dict["module"] direct_dict = { "img_in.proj": "img_in.proj", "time_in.mlp.0": "time_in.timestep_embedder.0", "time_in.mlp.2": "time_in.timestep_embedder.2", "vector_in.in_layer": "vector_in.0", "vector_in.out_layer": "vector_in.2", "guidance_in.mlp.0": "guidance_in.timestep_embedder.0", "guidance_in.mlp.2": "guidance_in.timestep_embedder.2", "txt_in.input_embedder": "txt_in.input_embedder", "txt_in.t_embedder.mlp.0": "txt_in.t_embedder.timestep_embedder.0", "txt_in.t_embedder.mlp.2": "txt_in.t_embedder.timestep_embedder.2", "txt_in.c_embedder.linear_1": "txt_in.c_embedder.0", "txt_in.c_embedder.linear_2": "txt_in.c_embedder.2", "final_layer.linear": "final_layer.linear", "final_layer.adaLN_modulation.1": "final_layer.adaLN_modulation.1", } txt_suffix_dict = { "norm1": "norm1", "self_attn_qkv": "self_attn_qkv", "self_attn_proj": "self_attn_proj", "norm2": "norm2", "mlp.fc1": "mlp.0", "mlp.fc2": "mlp.2", "adaLN_modulation.1": "adaLN_modulation.1", } double_suffix_dict = { "img_mod.linear": "component_a.mod.linear", "img_attn_qkv": "component_a.to_qkv", "img_attn_q_norm": "component_a.norm_q", "img_attn_k_norm": "component_a.norm_k", "img_attn_proj": "component_a.to_out", "img_mlp.fc1": "component_a.ff.0", "img_mlp.fc2": "component_a.ff.2", "txt_mod.linear": "component_b.mod.linear", "txt_attn_qkv": "component_b.to_qkv", "txt_attn_q_norm": "component_b.norm_q", "txt_attn_k_norm": "component_b.norm_k", "txt_attn_proj": "component_b.to_out", "txt_mlp.fc1": "component_b.ff.0", "txt_mlp.fc2": "component_b.ff.2", } single_suffix_dict = { "linear1": ["to_qkv", "ff.0"], "linear2": ["to_out", "ff.2"], "q_norm": "norm_q", "k_norm": "norm_k", "modulation.linear": "mod.linear", } # single_suffix_dict = { # "linear1": "linear1", # "linear2": "linear2", # "q_norm": "q_norm", # "k_norm": "k_norm", # "modulation.linear": "modulation.linear", # } state_dict_ = {} for name, param in state_dict.items(): names = name.split(".") direct_name = ".".join(names[:-1]) if direct_name in direct_dict: name_ = direct_dict[direct_name] + "." + names[-1] state_dict_[name_] = param elif names[0] == "double_blocks": prefix = ".".join(names[:2]) suffix = ".".join(names[2:-1]) name_ = prefix + "." + double_suffix_dict[suffix] + "." + names[-1] state_dict_[name_] = param elif names[0] == "single_blocks": prefix = ".".join(names[:2]) suffix = ".".join(names[2:-1]) if isinstance(single_suffix_dict[suffix], list): if suffix == "linear1": name_a, name_b = single_suffix_dict[suffix] param_a, param_b = torch.split(param, (3072*3, 3072*4), dim=0) state_dict_[prefix + "." + name_a + "." + names[-1]] = param_a state_dict_[prefix + "." + name_b + "." + names[-1]] = param_b elif suffix == "linear2": if names[-1] == "weight": name_a, name_b = single_suffix_dict[suffix] param_a, param_b = torch.split(param, (3072*1, 3072*4), dim=-1) state_dict_[prefix + "." + name_a + "." + names[-1]] = param_a state_dict_[prefix + "." + name_b + "." + names[-1]] = param_b else: name_a, name_b = single_suffix_dict[suffix] state_dict_[prefix + "." + name_a + "." + names[-1]] = param else: pass else: name_ = prefix + "." + single_suffix_dict[suffix] + "." + names[-1] state_dict_[name_] = param elif names[0] == "txt_in": prefix = ".".join(names[:4]).replace(".individual_token_refiner.", ".") suffix = ".".join(names[4:-1]) name_ = prefix + "." + txt_suffix_dict[suffix] + "." + names[-1] state_dict_[name_] = param else: pass return state_dict_